
www.manaraa.com

Using Visual Technologies in the Introductory Programming Courses

for Computer Science Majors

by

Kellie W. Price

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computing Technology in Education

Graduate School of Computer and Information Sciences

Nova Southeastern University

2013

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3558099

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3558099

www.manaraa.com

www.manaraa.com

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Using Visual Technologies in the Introductory Programming Courses

for Computer Science Majors

by

Kellie W. Price

April 2013

Decreasing enrollments, lower rates of student retention and changes in the learning

styles of today’s students are all issues that the Computer Science (CS) academic

community is currently facing. As a result, CS educators are being challenged to find the

right blend of technology and pedagogy for their curriculum in order to help students

persist through the major and produce strong graduates.

Visual technologies are being explored as a way to present difficult programming

concepts in a manner that is easier to visualize and simpler to use. Visual technologies

can make learning programming easier by minimizing the syntax of the programming

language being used and providing visual feedback to the students to aid in

conceptualization of the programming constructs.

The goal was to improve student retention and performance by incorporating visual

technologies in the introductory programming course, CS1, at East Tennessee State

University (ETSU). The ADDIE approach to instructional design was used to develop

and implement a curriculum that incorporated visual technologies in CS1 at ETSU.

Subsequently, quasi-experimental research methods, using the Post-Test Only

Nonequivalent Groups Design approach, were used to perform assessment on the effects

of the revised curriculum on student performance in the course and retention in the major

as compared to student performance and retention as measured prior to the course

redesign.

The results of the study indicate a positive impact on student performance in CS1 and

student retention in the major as a result of the use of two types of visual technologies in

CS1 at ETSU. Visual technologies supporting algorithm development, such as

RAPTOR, had a positive impact on student performance in the area of problem solving

and algorithm development as well as the use of decision and repetition constructs in

programming. Visual technologies supporting program development, such as Alice, had

a positive impact on student performance in the area of object-oriented programming

concepts such as objects and classes. The combination of these two types of visual

technologies showed evidence of improvement among student performance as a whole in

the course and slight improvement in student persistence in the major.

www.manaraa.com

Acknowledgements

“I can do all things through Christ which strengtheneth me.” Phil. 4:13

I owe God all of the glory, honor and praise for every accomplishment in my life.

I am forever grateful to everyone who has been there for me with your prayers,

friendship, love and support. This accomplishment is as much yours as it is mine.

I owe my advisor, Dr. Trudy Abramson, a debt of gratitude for not giving up on me and

for patiently encouraging and supporting me at a time when I was ready to give up. You

have been an inspiration to me and I am very thankful for having had the pleasure of

working with you. Without you, I would not have reached this goal. Thank you also to

Dr. Amon Seagull and Dr. Antonio Rincon for serving on my committee. Your patience,

encouragement and feedback were very much appreciated and crucial to my success.

Thank you to Dr. Donald Sanderson, Dr. Suzanne Smith and Dr. Sarah Stoeklin for

helping me identify and develop an idea that I was passionate about. I would especially

like to thank Dr. Smith for picking up where Dr. Sanderson left off. You were an

unbelievably dedicated mentor without whom I would not have been successful. Thank

you also to my colleagues, Dr. Tony Pittarese and Dr. Marty Barrett for helping with

editing and advice; Dr. Edith Seier for providing crucial guidance with the statistical

areas of the research; all of my colleagues at ETSU who have fully supported me along

the way; and Dr. Terry Countermine and Mrs. Rikki Cornett Young for sharing the

journey with me throughout my entire college career. You have both been an incredible

source of inspiration, strength, encouragement and friendship every step of the way.

Thank you to my family and friends who have been my prayer warriors, my constant

source of encouragement and inspiration and who never gave up on me. God has blessed

me with a support system of so many incredible family members and friends that I could

never name them all. To Julieann, Amy, Sonya, Kim, Jana and Melissa – thank you for

your unwavering love and support and for being there for me in every way imaginable.

Dedication

To my children, Ashleigh and Noah

You are my inspiration, my joy and my special gifts from God

who have sacrificed more than anyone along this journey

To Mama, Daddy, Momaw, Granddaddy, Sissy, Sara, Brooke, Scot and my entire family

Your constant love, support, patience, encouragement and prayers

have made all of my accomplishments possible

To Gran and Dr. Donald Sanderson

You were two very special sources of inspiration, strength and encouragement,

and though you are not here to share in the joy of this accomplishment with me today,

you are rejoicing with me in my heart

www.manaraa.com

v

Table of Contents

Approval Page ii

Abstract iii

Acknowledgments iv

List of Tables vii

List of Figures viii

Chapters

1. Introduction 1

Background 1

Problem Statement 3

Dissertation Goal 7

Research Questions 8

Relevance and Significance 9

Limitations and Delimitations 10

Definition and Acronyms 10

Organization of the Study 16

2. Review of the Literature 18

Misconceptions about the CS Field 19

Under-prepared for an Introductory Programming Course 20

Switching Programming Paradigms and Languages 29

Learning Styles of Today’s Students 34

Poorly Designed Introductory Programming Courses 36

Relationship of the Literature to the Study 37

3. Methodology 38

Problem and Goal 38

Research Design 39

Instrumentation 40

Approach 42

Data Collection 56

Resources 57

Summary 58

4. Results 60

Implementation 61

Evaluation 65

5. Conclusions, Implications, Recommendations, and Summary 78

Conclusions 78

Implications and Recommendations 87

Summary 89

www.manaraa.com

vi

Appendices

A. Data Collection Instruments 93

B. Course Materials for CS1 at ETSU 114

C. IRB Approvals 123

Reference List 126

www.manaraa.com

vii

List of Tables

Tables

1. Experts/Members of the CSCI Introductory Programming Committee at ETSU 42

2. Comparison of Student Performance on Selection Topic – Statistical Analysis 67

3. Comparison of Student Performance on Selection Checkpoint – Descriptive Statistics

68

4. Comparison of Student Performance on Repetition Topic – Statistical Analysis 70

5. Comparison of Student Performance on Repetition Checkpoint – Descriptive

Statistics 71

6. Comparison of Student Performance on Objects/Classes Topic – Statistical Analysis

72

7. Comparison of Student Performance on Objects/Classes Checkpoint – Descriptive

Statistics 73

8. Comparison of Student Performance on Final Calculated Grade – Statistical Analysis

75

9. Comparison of Student Retention in CS1 and Persistence in the Major 77

www.manaraa.com

viii

List of Figures

Figures

1. Example classes provided by Alice 22

2. Alice templates for creating a virtual world 23

3. Adding an object to the virtual world in Alice 23

4. An object and its methods in the virtual world in Alice 24

5. An Alice animation with code 24

6. Flowcharting symbols available in RAPTOR 27

7. Flowcharting symbols with descriptions 27

8. Step-by-step execution of an algorithm in RAPTOR 28

9. Algorithm execution with output in RAPTOR 28

10. BlueJ environment 32

11. Greenfoot environment 33

12. An Alice application that allows acceleration and braking using a Car class 44

13. A Java implementation of an application using a similar Car class that allows for

acceleration and braking 45

14. Examples of algorithms written in pseudocode 47

15. Example of an algorithm written as a flowchart in RAPTOR 48

16. Execution of a flowchart solution in RAPTOR 62

17. Selecting a Class in Alice 64

18. Instantiating an object of a class in Alice 64

19. State, Behavior and Identity of an object in Alice 64

20. Two-way ANOVA Interaction Plot for Selection 67

www.manaraa.com

ix

21. Two-way ANOVA Interaction Plot for Repetition 70

22. Two-way ANOVA Interaction Plot for Objects/Classes 73

23. Two-way ANOVA Interaction Plot for Final Grade for the Course 75

www.manaraa.com

1

Chapter 1

Introduction

Background

 Traditionally, the computer science (CS) curriculum in colleges and universities

begins with a two-semester sequence of programming courses. These courses,

commonly known as CS1 and CS2, are designed to teach the basics of program

development and a programming language. For the first course, CS1, the main focus of

program development is the design of algorithms. An algorithm is a step-by-step

procedure for solving a problem and serves as the blueprint from which a program is

developed. CS1 also introduces basic programming concepts such as selection,

repetition, and input and output statements. Upon successful completion of CS1, students

are able to design and develop basic programs in a given programming language. In the

CS2 course, more advanced programming and development concepts are introduced such

as data structures, files, error handling and debugging. Upon successful completion of

CS2, students are able to design, develop and test intermediate-level programs in a given

programming language. Typically, the same programming language is used for the two-

semester sequence.

 During the past decade, the CS academic community has experienced higher

failure rates and lower student retention in the CS1 and CS2 courses (Zweben, 2008;

Vegso, 2008; Yadin, 2011; Soe, Guthrie, Yakura, & Hwang, 2011; Guthrie, Yakura, &

www.manaraa.com

2

Soe, 2011; Becerra-Fernandez, Elam, & Clemmons, 2010; Sloan & Troy, 2008; Ali,

2009; Moskal, Lurie & Cooper, 2004; Forte & Guzdial, 2004; Chen & Morris, 2005;

Herrmann et al., 2003; Talton, Peterson, Kamin, Israel, & Al-Muhtadi, 2006; Boyer,

Dwight, Miller, Raubenheimer, Stallman, & Vouk, 2007). Student retention in this

context refers to the successful completion of CS1 and progression to CS2. A student

who is not retained is one who does not successfully complete CS1 and chooses not to

repeat it or a student who does successfully complete CS1 but chooses not to progress to

CS2 and subsequently leaves the major or the university. To address these two problems,

various solutions have been proposed. The focus of many solutions is improving

students’ understanding of algorithm development and programming concepts through

changes in the curriculum or the use of visual technologies.

The investigation site was the Department of Computing at East Tennessee State

University (ETSU). ETSU is a regional university in northeast Tennessee offering over

100 programs of study, including two-year associate degrees, bachelor’s, master’s,

educational specialist, doctor of medicine, doctor of pharmacy, doctor of education, and

doctor of philosophy degrees. The Department of Computing at ETSU is housed within

the College of Business and Technology. The department offers undergraduate degrees

in three different concentrations, Computer Science, Information Systems and

Information Technology and graduate degrees in Computer Science and Information

Technology. According to the Fall 2011 issue of The ETSU Fact Book

(http://www.etsu.edu/opa/factbook.aspx), there were 383 undergraduate and 52 graduate

majors in the CS department.

http://www.etsu.edu/opa/factbook.aspx

www.manaraa.com

3

Problem Statement

Higher rates of student failure and lower rates of student retention in introductory

programming courses are significant problems in the CS academic community (Yadin,

2011; Soe et al., 2011; Guthrie et al., 2011; Becerra-Fernandez et al., 2010; Sloan &

Troy, 2008; Ali, 2009). These problems become even more significant when coupled

with declining enrollment rates. According to the Computing Research Association

(Zweben, 2008), the number of new undergraduates declaring CS as a major dropped

dramatically from 2000 to 2006 by as much as 53% in Ph.D. granting institutions. The

decline is even greater among all degree-granting institutions where the percentage

dropped by approximately 70% between 2000 and 2005 (Vegso, 2008). The ACM and

IEEE Computer Science Curriculum Revision (2008) reported that there was a decrease

in the number of graduates because enrollments had dropped by as much as 70% from

their peak in 2001. While the number of students declaring CS as a major in Ph.D.

granting institutions continued to decline throughout 2007, a slight increase has been seen

between 2007 and 2010 according to the Computing Research Association. However,

about one-third of the departments surveyed are still reporting decreases in total

enrollment (Zweben, 2011).

The decline in new undergraduates entering the major has been anecdotally

attributed to factors such as the dot-com bust and outsourcing (Manaris, 2007; Yadin,

2011; Soe et al., 2011; Becerra-Fernandez et al., 2010). However, trends in CS education

beginning a few years prior to 2001 may have had a significant impact on the recruitment

and, more importantly, the retention of students (Manaris, 2007). Prior to 2001,

relatively simple programming languages such as Pascal, which was designed

www.manaraa.com

4

specifically for teaching introductory programming concepts, were used in CS1 and CS2.

After 2001, the trend became to use complex, industry-strength programming languages

such as Java and C++ (Yadin, 2011; Blake, 2011; Soe et al., 2011; Sigle, 2008; Ali,

2009). According to McCauley and Manaris (2002), the use of industry-strength

programming languages in the introductory programming courses had increased from

39% in 1996 to 89% in 2002 and their use continues to be popular today.

Another trend that may have had a negative effect on recruitment and retention of

CS students was the switch from a procedural paradigm to an object-oriented paradigm

for program development (Manaris, 2007; Yadin, 2011; Ali, 2009). A procedural

paradigm is a relatively simple approach to algorithm development and program design

which focuses on procedures. The object-oriented paradigm is a more complex abstract

approach which focuses on objects and classes. The switch from the procedural paradigm

to the object-oriented paradigm has required additional topics to be taught in the

introductory programming courses. The use of the object-oriented paradigm increased

from 36% in 1995 to 82% in 2002 (Manaris, 2007) and continues to be heavily utilized

today.

The impact of these two trends in CS education has been significant in the

introductory programming courses. The result has been an increase in the number and

difficulty of the topics being presented and an increase in the complexity of the

programming languages being used (Manaris, 2007; Yadin, 2011; Sigle, 2008). These

factors may have had an effect on the failure rate thus potentially impacting the retention

of majors.

www.manaraa.com

5

In addition to the difficulties caused by these two trends, the learning style of

today’s students has drastically changed. This generation of students, often referred to as

Millenials (Stamey & Sheel, 2010; Oblinger, 2003; Frand, 2000), tend to be visual

learners who prefer technology to textbooks, view active participation as more important

than obtaining knowledge, and expect to learn in the same manner in which they live –

immersed in animation and graphics through games and other recreational activities

(Howles, 2007; Sigle, 2008) – approaches not typically used in introductory

programming courses.

In an attempt to address the issues associated with the new learning styles of CS

majors, the use of more complex programming languages and the exposure to more

difficult programming concepts in the introductory programming courses, many CS

educators are exploring new visual technologies to enhance student learning. There are a

variety of different technologies, but most can be categorized as those used to enhance

algorithm development (Gudmundsen, Olivieri, & Sarawagi, 2011; Carlisle, 2009; Yoo,

Yoo, Seo, & Pettey, 2011) and those used to support programming concepts (Yadin,

2011; Stolee & Fristoe, 2011; Davies, Polack-Wahl, & Anewalt, 2011; Guthrie et al.,

2011).

Some of the visual technologies being incorporated into CS courses support

programming development through the use of visual programming environments.

Examples include Kodu (Stolee & Fristoe, 2011), Alice (Davies et al., 2011; Guthrie et

al., 2011), Greenfoot (Davies et al., 2011), and Scratch (Davies et al., 2011; Guthrie et

al., 2011). Visual technologies being used to enhance algorithm development include

Visual Logic (Gudmundsen et al., 2011), RAPTOR (Carlisle, 2009), and AlgoTutor (Yoo

www.manaraa.com

6

et al., 2011). Others are using combinations of visual technologies such as Alice and

robotics (Wellman, Davis, & Anderson, 2009). In addition to using visual programming

environments or visual algorithm development tools, some universities and colleges are

also using other visual technologies such as board games (Drake & Sung, 2011) and

visual learning objects/modules (Miller, Soh, Samal, Nugent, Kupzyk, & Masmaliyeva,

2011; Stone & Clark, 2011; Yim, Garcia, & Ahn, 2010) to capture the attention of

students who are visual learners.

 CS educators are also exploring other pedagogical approaches to enhance student

learning such as adding a third course to the introductory programming course sequence.

This third course, commonly known as CS0, is a prerequisite for the traditional CS1. The

focus of this course is algorithm development and basic programming concepts (Pearce &

Nakazawa, 2008; Sloan & Troy, 2008). It allows many of the topics in CS1 to be

introduced in CS0, thus reducing the number of new concepts taught in the CS1 course.

Many CS0 courses use the visual technologies previously listed and have reported a

positive effect on the success of computer science students in CS1 (Pearce & Nakazawa,

2008; Sloan & Troy, 2008).

The Department of Computing at ETSU has experienced the same trends and

issues in enrollment and retention as other CS departments nationwide, as seen in

university data (http://www.etsu.edu/iep/fb.htm). There was a 26% decrease in

undergraduate enrollment from 2000 to 2009. During that same time span, the number of

degrees conferred increased by 48% from 2000 to 2005 but then decreased by 16% from

2005 to 2009 due to the decrease in enrollment. Many changes occurred within the

department, as they did in CS departments nationwide, including a switch to the object-

http://www.etsu.edu/iep/fb.htm

www.manaraa.com

7

oriented programming paradigm and the adoption of an industry-strength programming

language in the introductory programming courses.

The retention rates in the introductory programming courses at ETSU also reflect

the rates nationwide. From Fall 2009 to Spring 2011, 20% of the students enrolled in the

introductory programming courses were not retained in the major beyond their first

semester and 35% of the students were not retained in the major beyond the freshman

year (T. Countermine, ETSU CS department chair, personal communication, July 20,

2011). As a result, the CS department at ETSU has tried different approaches to

increasing the student success and retention rates. Like many other CS departments

nationwide, ETSU has incorporated a CS0 course which uses visual technologies such as

RAPTOR and Alice to introduce basic programming and algorithm concepts to students

who are not prepared to enter the CS1 programming course. However, the use of these

visual technologies has not been implemented beyond the CS0 course.

 Decreasing enrollments, lower rates of student retention and changes in the

learning styles of today’s students are all issues that the CS academic community is

currently facing. As a result, CS educators are being challenged to find the right blend of

technology and pedagogy for their curriculum in order to help students persist through

the major and produce strong graduates.

Dissertation Goal

The goal was to improve student retention and achievement with curricula that

incorporate visual technologies beyond the CS0 programming course. The steps taken

were identification of the factors contributing to the reduction in the retention rate for

www.manaraa.com

8

introductory programming courses in the CS curriculum, development of a list of the

most popular visual technologies currently used in introductory programming courses to

address retention problems, and evaluation of those technologies based upon the

technology’s level of appropriateness for CS1, coverage of CS1 concepts, usability and

resource requirements.

Based on those findings, the generic analysis, design, development,

implementation, evaluation (ADDIE) instructional design approach was followed to

develop a new CS1 course that incorporated visual technologies. Quasi-experimental

research was performed to evaluate the new instructional approach, focusing on student

achievement and retention.

Research Questions

All questions relate to the introductory programming course, CS1, in a CS

curriculum.

1. What are the factors attributable to poor performance and low retention rates and

what solutions have been reported?

2. How can the introductory course, CS1, be redeveloped and implemented to

incorporate visual technologies?

3. What are the outcomes of teaching the redesigned course?

4. What conclusions may be drawn regarding the value of the new introductory

curricula in terms of student performance and retention?

www.manaraa.com

9

Relevance and Significance

CS education has reached a critical point where the gap between established

teaching methods and learning styles of today’s CS students is greater than ever. This

gap between instructional delivery and student learning, which will be referred to as the

Millennial CS Education Gap, can have a profound effect on the enrollment numbers in

CS departments nationwide (Dillon, Anderson, & Brown, 2012). For departments that

may be experiencing declining enrollment and retention statistics, it is disconcerting that

the current economic environment may eventually force enrollment and retention rates to

become a significant factor in their funding formula. Therefore, it is crucial to the

success of these departments that CS educators find a way to bridge the Millennial CS

Education Gap.

Many are trying to bridge this gap through increased learning and retention with

the development of simpler, more intuitive integrated development environments (IDEs)

and visual approaches to learning (Dillon et al., 2012; Gudmundsen et al., 2011; Sigle,

2008; Carlisle, 2009; Yoo et al., 2011; Stolee & Fristoe, 2011; Davies et al., 2011).

However, the tools alone cannot bridge the gap between student learning and

instructional delivery. These tools must be integrated into the course in a manner that

will maximize their potential for increasing student understanding of programming

concepts, thus increasing student learning and ultimately having a positive effect on

student retention and enrollment rates.

www.manaraa.com

10

Limitations and Delimitations

The treatment group consisted of all students enrolled in the CS1 course at ETSU

during the Fall 2012 semester. The number of sections of CS1 offered and the number of

students enrolled in those sections was beyond the control of the investigator. In

addition, while it was guaranteed that at least two professors would be teaching CS1

during the Fall 2012 semester, the number of sections assigned to each professor was

another limitation beyond the control of the investigator.

Definitions and Acronyms

Acronyms

ABET: Accreditation Board for Engineering and Technology

ACM: Association for Computing Machinery

ADDIE: Analysis, Design, Development, Implementation and Evaluation

CS: Computer Science

ETSU: East Tennessee State University

HTML: Hypertext Markup Language

IDE: Integrated Development Environment

IEEE: Institute of Electrical and Electronics Engineers

OO: Object-Oriented

UML: Unified Modeling Language

www.manaraa.com

11

Definitions

Algorithm: a well-defined, ordered set of steps for solving a specific problem

(Gaddis, 2011b).

Class: a description of a particular type of object that serves as a blueprint for creating

and using objects in an object-oriented programming language. For example, a

blueprint that provides a detailed description of a house to be built is a real-world

example of a class (Gaddis, 2011a).

Compile: the process in which the source code, written in a programming language, is

checked for errors and, if error-free, is translated into a form that can be executed by

the computer (Gaddis, 2011b).

Count-controlled repetition: a form of looping in which a block of code is repeated a

specific number of times (Gaddis, 2011b).

CS majors/CS students: for this research, this refers to students who have declared

Computing as their major at ETSU. It includes students in all three of the

concentrations, Computer Science, Information Systems, and Information

Technology, housed in the Department of Computing Sciences at ETSU (Author).

CSCI Introductory Programming Committee: a committee in the Department of

Computing at ETSU whose charge is to make decisions regarding the introductory

www.manaraa.com

12

programming courses within the department. Other responsibilities of the committee

include making sure all sections of a particular programming course are kept in sync,

ensuring continuity throughout the sequence of introductory programming courses,

language and textbook adoption, and acting on issues that arise regarding student

learning, success and retention. Members of this committee include three tenured

Full Professors, three tenured Assistant Professors and one Lecturer. All members of

the committee are actively involved in teaching one or more of the courses in the

introductory programming sequence (Author).

CS0: a typical pre-programming course completed before the first semester

programming course that focuses on algorithm development and basic programming

concepts. It is generally taught using only pseudocode or visual programming

technologies to avoid the use of complex syntax while learning basic programming

concepts (Mitchell, 2001; Davies et al., 2011).

CS1: typical first semester programming course that introduces basic programming

concepts (Davies et al., 2011).

CS2: typical second semester programming course that introduces more advanced

programming and development concepts such as data structures, files, error handling

and debugging (Davies et al., 2011).

www.manaraa.com

13

Debugging: the process of identifying and correcting errors in a computer program

(Sprankle & Hubbard, 2009).

Desk checking: the process of manually checking an algorithm for logic errors using

a pen-and-paper technique (Author).

Drag-and-drop: a feature in an environment where operations can be performed by

dragging visual objects, such as blocks of text, icons or programming instructions,

across the screen and dropping them in a new location (Parker, 2002).

Event-controlled repetition: a form of looping in which a block of code is repeated

until a certain condition is true (Gaddis, 2011a).

Flowchart: a diagram that graphically depicts the sequence of steps in an algorithm

(Gaddis, 2011a)

IDE: Integrated Development Environment. Software that includes a text editor,

compiler, debugger and other programming features all in one integrated package

allowing for tasks to be performed by the click of a button (Gaddis, 2011b).

Industry-strength programming languages: programming languages that are not

designed specifically for the purpose of learning to program but for actual use in the

software development industry (Author).

www.manaraa.com

14

Iteration: (aka Repetition or Looping) a programming construct that causes a set of

statements to be repeated (Gaddis, 2011b).

Javadoc documentation: formatted HTML documents that display the documentation

(programmer comments) taken from the Java source code in a more readable format

(Gaddis, 2011b).

Methods: the behaviors of an object or procedures that it can perform (Gaddis,

2011b).

Object: an object is a specific instance of a class. It is created from the class and has

all of the characteristics of the class. For example, a house built using a blueprint is a

real-world example of an object (Gaddis, 2011a).

Object-oriented paradigm: a more modern, complex, abstract approach to

programming that promotes code that is reusable and is based upon the use of objects

and classes (Gaddis, 2011b).

Objects-first: the sequence in which programming topics are presented in a CS1

course where the concept of objects and classes is introduced early in the sequence of

topics before other basic procedural programming concepts have been introduced

(Beaubouef & Mason, 2005).

www.manaraa.com

15

Objects-later: the sequence in which programming topics are presented in a CS1

course where the concept of objects and classes is introduced later in the sequence of

topics after other basic procedural programming concepts have been introduced

(Beaubouef & Mason, 2005).

Post-condition event-controlled looping: a type of repetition in which the block of

code is executed before checking the condition to determine if it should be repeated

(Gaddis, 2011a).

Pre-condition event-controlled looping: a type of repetition in which the condition is

checked before executing the block of code to determine if it should

executed/repeated (Gaddis, 2011a).

Procedural paradigm: a relatively simple approach to algorithm development and

program design focused on the use of procedures to perform tasks (Gaddis, 2011b).

Pseudocode: an algorithmic solution written in an outline format in a cross between

human language and programming language (Gaddis, 2011b).

Selection: (aka Decision Structure) a programming construct in which one of two sets

of instructions is executed based upon the result of some condition (Sprankle &

Hubbard, 2009).

www.manaraa.com

16

Student retention: the successful completion of CS1 and progression to CS2 (Author).

Syntax errors: mistakes made by the programmer that violate the rules of a

programming language (Gaddis, 2011b).

UML: provides a standard set of diagrams used to graphically depict classes and their

relationships in an OO system (Gaddis, 2011b).

Variable: a named location for storage of data in a computer’s memory (Gaddis,

2011b).

Visual algorithm development tools: tools that use drag-and-drop technology,

graphics and visual representations of programming constructs to support the

algorithm development process (Author).

Visual development environment: an integrated development environment that has

some of the following additional features to support the programming process - drag-

and-drop technology, visual representations of programming constructs, built-in UML

modeling tools, graphics, the ability to create animations and programs (Author).

Organization of the Study

The study began by identifying and analyzing both the factors affecting student

success and retention in introductory programming courses and the solutions that had

www.manaraa.com

17

been proposed to address these factors. One category of solutions in particular, the use of

visual technologies, was examined in relation to their use and effectiveness as it related to

success and retention in the introductory programming courses.

Based upon the findings presented in the review of literature, a CS1 course was

developed using the ADDIE approach to instructional design that incorporated the

solutions utilizing visual technologies that had been reported as most effective and that

were most appropriate for the use in CS1 based upon factors such as the coverage of CS1

concepts, usability and resource requirements. Details about the quasi-experimental

research that was conducted to evaluate the effectiveness of the new instructional

approach once implemented is also presented.

www.manaraa.com

18

Chapter 2

Review of Literature

The literature was reviewed with respect to the introductory programming courses

in CS, factors affecting student success and retention and the solutions proposed to

address these factors. There are many reasons that students may drop, fail or withdraw

from college-level classes including personal, financial, and employment related issues.

These factors can affect any student in any major. However, there are additional factors

that particularly affect CS students. The common factors across colleges and universities

that seem to have a significant impact particularly during their freshman year are

misconceptions about the CS field (Beaubouef & Mason, 2005; Ruslanov & Yolevich,

2010; Biggers, Brauer & Yilmaz, 2008), being under-prepared due to a lack of problem

solving and mathematical abilities (Sloan & Troy, 2008; Beaubouef & Mason, 2005;

Moskal et al., 2004), number and complexity of topics being introduced (Urness &

Manley, 2011; Yadin, 2011; Ali, 2009; Sigle, 2008; Manaris, 2007; Chen & Morris,

2005), the use of industry-strength programming languages (Beaubeouf & Mason, 2005;

Manaris, 2007; Carlisle, 2009; Yadin, 2011; Blake, 2011; Soe et al., 2011; Sigle, 2008;

Ali, 2009; McCauley & Manaris, 2002; Moskal et al., 2004), poorly designed

introductory programming courses (Carlisle, 2009; Beaubouef & Mason, 2005; Gal-Ezer

& Harel, 1998), and teaching and delivery styles that do not relate to today’s visual

learners (Beaubouef & Mason, 2005; Stamey & Sheel, 2010; Oblinger, 2003; Frand,

www.manaraa.com

19

2000; Howles, 2007; Sigle, 2008; Carlisle, Wilson, Humphries & Hadfield, 2004;

Cardellini, 2002). The literature review examined these problems, the proposed solutions

and visual technology’s role in these solutions.

Misconceptions about the CS Field

Many students are not retained beyond the first semester because of

misconceptions about the CS field (Beaubouef & Mason, 2005). The students may be

very technology savvy and may have performed well in courses that teach word

processing, spreadsheet and internet skills. These students, therefore, have the

misconception that because they are proficient in the use of computers they will do well

as CS majors. What they do not realize is that CS is not only about using technology but

also about developing technology for others to use. Ruslanov and Yolevich (2010) found

that the vast majority of college students surveyed did not know what CS majors learn.

Therefore, low retention rates in CS courses may be attributed in part to misperceptions

about the major or the field in general (Biggers et al., 2008).

Like other universities nationwide, ETSU has attempted to address this issue in a

freshman student-in-university course designed specifically for CS majors. The course

introduces students to the different fields and job opportunities in CS, the courses

required for each field, and how certain academic strengths and weaknesses may affect

the students’ success in the major courses. For some students, this type of course does

help to clarify misconceptions about the field of CS. However, the course at ETSU is

only available to incoming freshman and therefore is not beneficial to transfer students or

www.manaraa.com

20

students who did not start out at the university with CS declared as their major (T.

Franklin, ETSU CS department advisor, personal communication, June 1, 2012).

Under-prepared for an Introductory Programming Course

A lack of problem solving and mathematical abilities (Beaubouef & Mason, 2005;

Moskal et al., 2004) is a prevalent problem among students in introductory CS courses.

Lack of pre-college preparation in these areas sets students up for failure in introductory

programming courses. An introductory programming course or sequence of courses

typically has a very complex set of topics that are being introduced (Yadin, 2011; Chen &

Morris, 2005). These topics must be covered in the CS1 course in order to prepare

students for the next programming course, CS2, which builds off of CS1. In CS1,

students are expected to master problem solving, algorithm development, basic

programming constructs, the syntax of a computer language, and a programming

environment. This complexity and the number of topics can be overwhelming to students

who have not been exposed to courses with this level of complexity at this point in their

college career (Urness & Manley, 2011). Additionally, because of the large number of

topics in these introductory programming courses, the pace of the CS1 course is very fast.

Students with weak backgrounds in math and problem solving are often unable to keep

up with the pace of learning in CS1 (Beaubouef & Mason, 2005; Moskal et al., 2004).

If a fair number of students in the course are under-prepared, it can cause the class

population to be bimodal. A bimodal class is one in which students fall at opposite

extremes of the spectrum ranging from those who struggle due to being under-prepared to

those who are bored because they have prior programming experience (Hughes & Peiris,

www.manaraa.com

21

2006). While students who are not prepared for a programming course are not likely to

persist, students who are well prepared are at risk of becoming bored and are more likely

to leave the CS major (Sloan & Troy, 2008).

 A pedagogical approach that CS educators are exploring is adding a third course

to the introductory programming course sequence. This third course, commonly known

as CS0, is a prerequisite for the traditional CS1 course. The focus of this course is

typically algorithm development and basic programming concepts (Pearce & Nakazawa;

2008; Sloan & Troy, 2008; Anewalt, 2007; Dierbach, Taylor, Zhou, & Zimand, 2005;

Pearce & Nakazawa, 2008; Cliburn, 2006; Mitchell, 2001). The use of CS0 courses

levels the playing field in the CS1 course by helping students who are weak in problem

solving skills to become better prepared for CS1 thus reducing the bimodal problem

occurring in CS1 courses. It also allows many of the basic topics from CS1 to be

introduced in CS0, thus reducing the number of new concepts taught in the CS1 course.

The inclusion of a CS0 course has had positive success in many colleges and universities

in increasing the success of computer science students in CS1 (Stamey & Sheel, 2010;

Sloan & Troy, 2008; Browne, Lowe, Wells, & Berry, 2006; Anewalt, 2007; Dierbach et

al., 2005; Pearce & Nakazawa, 2008; Cliburn, 2006; Mitchell, 2001; Moskal et al., 2004).

 Visual technologies are commonly used in CS0 courses. Visual programming

environments and visual algorithm development tools have been successfully

incorporated in CS0 (Moskal et al., 2004; Mullins, Whitfield & Conlon, 2009; Garlick &

Cankaya, 2010). These environments and tools are designed to be more accommodating

to visual learners.

www.manaraa.com

22

Visual programming environments simplify complex programming concepts by

allowing students to see visual representations of these concepts and to develop programs

in a more visual manner. A popular example of a visual programming environment that

has been successfully used in CS0 courses is the Alice programming environment. Alice,

which was developed by Carnegie Mellon University, is an interactive environment

utilizing drag-and-drop technology.

Objects and classes, fundamental concepts in OO programming introduced in

CS1, are abstract and difficult for students in introductory programming courses to

understand. Alice uses physical entities such as people, animals or cars to represent these

concepts. A set of pre-made classes are provided in Alice for use in building objects. An

example of classes provided in Alice is illustrated in Figure 1. Every class is a 3-

dimensional character with a unique name.

Figure 1. Example classes provided by Alice.

These objects are created and used in virtual worlds within Alice. In the Alice

environment, students first select a template to begin creating their virtual world. As seen

in Figure 2, examples include water, sand, grass, dirt, snow and space.

www.manaraa.com

23

Figure 2. Alice templates for creating a virtual world.

Then students begin to put objects into their virtual world by selecting a class and

creating an object (instance) of that class in the world as shown in Figure 3.

Figure 3. Adding an object to the virtual world in Alice.

As seen in Figure 4, the object is placed in the virtual world. Figure 4 also illustrates that

every object is provided with a set of primitive methods that allow students to give action

to the objects created in their world. Examples of these methods include moving,

turning, rolling and resizing as seen in the bottom right of Figure 4. Certain objects also

have custom methods for added functionality that is unique to the type of object being

created. For example, the frog object has the custom methods of foottap, ribbit and

headnod as seen in Figures 3 and 4.

www.manaraa.com

24

Figure 4. An object and its methods in the virtual world in Alice.

Along with all the predefined methods, Alice provides all the fundamental programming

constructs of sequence, selection, and iteration (count-controlled and event-controlled

repetition). Students can use these programming constructs and the provided methods to

create animations and games. Figure 5 shows an animation with the frog and happyTree

objects which includes sequence, selection and event-controlled iteration.

Figure 5. An Alice animation with code.

www.manaraa.com

25

One reason that Alice has been proven successful in CS0 courses is that students

can see objects performing tasks on the screen in their virtual world as a 3D animation.

In CS1, the OO programming concepts of objects and classes are difficult hurdles for

students because they are so abstract and text-based only. Working with these tangible

objects in CS0 helps to prepare students for these abstract concepts when encountered in

CS1 (Gaddis, 2011a; Brown, 2008; Mullins, Whitfield & Conlon, 2008).

Another reason for using Alice in CS0 courses is that Alice eliminates the need

for students to learn the syntax of a programming language (Gaddis, 2011a). The Alice

environment allows students to use point-and-click with drag-and-drop technology to put

objects in the world as seen in Figures 1 and 3 and to select methods as seen in Figure 4.

The student writes the program by selecting a method on the left and dragging it into the

method editor where the actions of the animation or game are created. Syntax errors,

which are errors that violate the rules of a programming language, can be a major hurdle

for beginning programmers. The fact that students can only point-and-click with drag-

and-drop technology completely eliminates these errors.

Another benefit of using Alice in CS0 is that the visual nature of its 3-dimensional

environment allows students to create animations and games, thus igniting their

imagination and increasing their motivation and effort (Gaddis, 2011a, Brown, 2008). As

a result, instructors can potentially see an increase in student interest, understanding and

retention (Anewalt, 2007; Brown, 2008). However, students can be distracted by

spending too much time on creating elaborate animations without understanding the

intended programming concepts.

www.manaraa.com

26

A benefit for instructors teaching CS0 with Alice is the support provided by

Carnegie Mellon University. Carnegie Mellon provides the Alice software for free,

provides training workshops for college and university faculty nationwide, and maintains

a website that provides resources for teaching Alice and an online community of Alice

users (http://www.alice.org). Another advantage for instructors is the wide variety of

textbooks designed for CS0 courses that utilize Alice as the visual programming

environment (Herbert, 2011; Shelly, Cashman & Herbert, 2007; Dann, Cooper & Pausch,

2011; Adams, 2007; Lewis & DePasquale, 2008).

Visual algorithm development tools, the other category of visual technologies

used in CS0, support the development of algorithms in a more visual manner. Ideally, a

program is designed using an algorithm before it is written in a programming language.

The algorithm acts as the blueprint for the program and is where much of the problem

solving in the programming process occurs. Students struggle with algorithm

development because it is traditionally a paper-and-pencil activity. An example of a

visual algorithm development tool is RAPTOR. RAPTOR was developed by the

Department of Computer Science at the U.S. Air Force Academy. In the novice mode,

RAPTOR’s environment visually supports the algorithm development process.

 The RAPTOR environment is based on flowcharts. Flowcharting is a technique

for developing algorithms. It is made up of a set of symbols that represent the different

activities within an algorithm including input, output, selection, iteration and assignment.

It should be noted that RAPTOR only supports post-condition event-controlled iteration

(i.e., a do…until loop).

http://www.alice.org/

www.manaraa.com

27

Figure 6. Flowcharting symbols available in RAPTOR.

Figure 6 illustrates the symbols that are available in RAPTOR’s drag-and-drop

environment for these basic algorithmic activities which are explained in Figure 7.

Figure 7. Flowcharting symbols with descriptions.

Note. From Introduction to programming with RAPTOR, June, 2012, by W. Brown.

The most unique feature of the RAPTOR environment and its best benefit is the

ability to execute an algorithm. Traditionally, the correctness of algorithms is checked

through a manual activity called desk checking. RAPTOR automates the desk checking

process by providing dialog boxes for input and output operations and by highlighting

each executed step of an algorithm as it is encountered. Figure 8 shows the green

www.manaraa.com

28

highlighting provided by this step-by-step execution. RAPTOR also shows the content of

variables in memory during this automated desk checking.

Figure 8. Step-by-step execution of an algorithm in RAPTOR.

The output for an algorithm is displayed in RAPTOR’s master console window. Figure 9

shows an example of an algorithm and the output as a result with an input of 25.

Figure 9. Algorithm execution with output in RAPTOR.

www.manaraa.com

29

 The RAPTOR software is provided for free on the website

(http://raptor.martincarlisle.com/). The website also provides resources for teaching

RAPTOR including handouts and an online forum. However, there are a limited number

of textbooks designed for CS0 courses that utilize RAPTOR as the visual algorithm

development environment (Venit & Drake, 2011). More recent versions of RAPTOR

include OO design elements from UML.

Switching Programming Paradigms and Languages

Another trend in CS education was the switch from a procedural paradigm to an

object-oriented paradigm. The use of the object-oriented paradigm increased from 36% in

1995 to 82% in 2002 (Manaris, 2007). While the procedural paradigm is a relatively

simple approach to algorithm development and program design, the object-oriented

paradigm is a more complex abstract approach. This switch, driven by advancements in

software development, has resulted in the inclusion of object-oriented related topics in

the introductory programming courses. This addition has resulted in more topics and

more complexity in the CS1 course (Manaris, 2007; Yadin, 2011; Ali, 2009; Sigle, 2008).

As a result of switching to the OO programming paradigm, the use of industry-

strength programming languages became commonplace in introductory programming

courses (Beaubouef & Mason, 2005; Manaris, 2007; Carlisle, 2009). Prior to 2001, more

elementary programming languages such as Pascal, which was specifically designed for

teaching introductory programming concepts, were used in CS1 and CS2. After 2001,

the trend became to use more complex, industry-strength programming languages such as

Java and C++ (Yadin, 2011; Blake, 2011; Soe et al., 2011; Sigle, 2008; Ali, 2009).

http://raptor.martincarlisle.com/

www.manaraa.com

30

According to McCauley and Manaris (2002), by 2002 the use of industry-strength

programming languages in the introductory programming courses had increased to 89%

from 39% in 1996. In an attempt to give students experience in languages that are used

in industry to better prepare them for careers outside of the university and to give them

depth of exposure in a programming language as required by accrediting bodies, many

departments added to the complexity in their introductory programming courses

potentially having a negative impact on retention (Moskal et al., 2004).

In order to address this increased complexity, there are two schools of thought on

how to introduce OO topics in CS1 courses. The dilemma that instructors are faced with

is whether to adopt an objects-early or objects-late approach. While neither approach

seems to be the obvious choice, some CS1 instructors prefer the objects-late approach

because it gives the students the opportunity to focus on problem solving and

foundational programming constructs such as data types, input and output, decisions and

repetition (Yadin, 2011; Nesbit, 2009; Pillay & Jugoo, 2005; Beaubouef & Mason, 2005).

Instructors who favor this approach believe that by waiting to introduce the OO concepts

later in the semester it gives the students time to develop some programming maturity

without overwhelming them with complex OO concepts at the beginning of the semester

(Yadin, 2011; Mannila, Peltomäki & Salakoski, 2006; Eckerdal, Thuné & Berglund,

2005; Bruce, Buckingham, Hynd, McMahon, Roggenkamp & Stoodly, 2004). Another

concern among those who prefer the objects-late approach is that the objects-early

approach tends to focus more on the OO techniques and less on the basic problem solving

and programming constructs such as algorithm development, selection, and repetition

(Beaubouef & Mason, 2005).

www.manaraa.com

31

Another approach to addressing this increased complexity in CS1 is the inclusion

of a CS0 course in the introductory programming sequence. As discussed previously,

CS0 can be beneficial in introducing algorithm development, basic programming

concepts and introductory object-oriented topics (Pearce & Nakazawa; 2008; Sloan &

Troy, 2008; Anewalt, 2007; Dierbach et al., 2005; Cliburn, 2006; Mitchell, 2001). In

CS0, students can be introduced to these topics in a setting and time-frame that is less

pressured. This reduces the number of new concepts taught in the CS1 course, thus

potentially reducing the complexity of the course and increasing the students’ chance for

success and retention.

A simpler integrated development environment (IDE) is also used to address the

complexity introduced by switching to the OO paradigm. An IDE is software that allows

the programmer to write, debug, compile and execute programs from within the same

environment. Some IDEs can be quite complex and have a high learning curve, but a

simpler IDE intended for use in teaching OO programming can reduce the learning curve

for students who are unfamiliar with IDEs.

The BlueJ programming environment is an example of an IDE designed for

teaching Java in CS1 (Gross & Powers, 2005; Pears et al., 2007). BlueJ, a visual

programming environment, simplifies the programming process by removing some of the

complexity of the development environment and providing graphical representations of

the classes and objects within a project (Kouznetsova, 2007).

The BlueJ environment provides two windows in which the students work to

create programs. One window contains a graphical class structure where students create

the classes and objects needed for their program. Figure 10 shows the Instructor and

www.manaraa.com

32

Course classes and their relationship. The Java code for each class can be displayed in an

editor window by double-clicking on that class’ icon. When a student creates a class in

the class structure window, the BlueJ environment automatically generates the Java code

for that class including a class attribute, a constructor method and a generic class method.

This feature is beneficial to CS1 students because it reduces the amount of code to be

written by the student and thus reduces syntax errors. Figure 10 shows the Java code

created when the Course class is added to the class structure for this program.

Figure 10. BlueJ environment.

The BlueJ environment also gives a visual indicator of which classes have been

compiled. In Figure 10, the Instructor class has been compiled, but the Course class has

not as indicated by the diagonal lines in the class icon for Course. In the Java editor

within the BlueJ environment, students can modify the generated code and add to it to

complete their programs.

 The BlueJ software is provided for free on the website (http://www.bluej.org/).

The website also provides resources for teaching BlueJ including tutorials and an online

forum. There are several textbooks designed for CS1 courses that utilize BlueJ as the

http://www.bluej.org/

www.manaraa.com

33

visual programming environment (Barnes & Kölling , 2012; Riley, 2003; Bhuta, 2007).

Another advantage of BlueJ is its strong support for documentation. The BlueJ

environment provides the ability to create and view Javadoc documentation.

Another IDE designed for teaching an OO language in CS1 is Greenfoot.

Greenfoot, which is also a visual programming environment, combines text-based Java

with animation. The Greenfoot environment provides 2D animation for the creation of

games and simulations.

Figure 11. Greenfoot environment.

The Greenfoot environment allows the students to create animations in which they can

add objects from a collection of pre-defined classes. Examples of these classes include

Wombat, Rock and Leaf as seen in Figure 11. These classes have pre-defined methods

associated with them; for example, the Animal class provides methods such as act,

canSee, eat, move and turn. Figure 11 also shows the 2-dimensional grid in which all

animations are created. Using the Java editor within the Greenfoot environment, students

complete their programs by modifying the provided code or creating additional code.

www.manaraa.com

34

 The Greenfoot software is provided for free on the website

(http://www.greenfoot.org). The website also provides extensive resources for teaching

Greenfoot including video-based tutorials, example animations, and an online discussion

group. Currently there is only one textbook designed for CS1 courses that utilizes

Greenfoot as the visual programming environment (Kölling, 2010).

Learning Styles of Today’s Students

The learning style of today’s students has drastically changed from CS students of

the past. The current generation, often referred to as Millenials (Stamey & Sheel, 2010;

Oblinger, 2003; Frand, 2000), tend to be visual learners who prefer technology to

textbooks, view active participation as more important than obtaining knowledge and

therefore expect to learn in a manner in which they are immersed in animation and

graphics through games and other recreational activities (Howles, 2007; Sigle, 2008).

This is not an approach typically used in introductory programming courses due to the

highly textual nature of many programming languages and the emphasis on the use of

pseudocode, a solution written in an English outline format in algorithm development

(Carlisle et al., 2004; Cardellini, 2002).

Many studies performed in CS programs focusing on student learning styles and

their impact on student learning and success in introductory CS and similar engineering

courses have reported that an overwhelming number of the students enrolled in these

courses are visual learners (Chen & Lin, 2011; Gomes & Mendes, 2010; Gomes &

Mendes, 2008; Gomes & Mendes, 2007; Gomes, Carmo, Bigotte, & Mendes, 2006; Kuri

& Truzzi, 2002). It has been estimated that as many as 75% to 83% of modern CS

http://www.greenfoot.org/

www.manaraa.com

35

majors are visual learners (Thomas, Ratcliffe, Woodbury, & Jarman, 2002). Students’

learning styles impact the way that they approach learning new concepts and apply new

skills (Chamillard & Sward, 2005). Because visual learners retain more from things that

they see, flowcharts, diagrams, and pictures are more beneficial to them than written and

spoken explanations (Chamillard & Karolick, 1999). By understanding the learning

styles of students and how those learning styles affect their comprehension and mastery

of the subject matter, instructors of introductory level CS courses can better equip

themselves to present the basic problem solving techniques and programming constructs

in a manner which will accommodate all learning styles, including visual learners

(Chamillard & Sward, 2005; Grant, 2003; Burgess & Hanshaw, 2006).

Several approaches to helping visual learners have been described in previous

sections. Visual programming environments and visual algorithm development tools such

as Alice, RAPTOR, BlueJ and Greenfoot have been developed to bring a more

interactive, simplistic, and creative approach to teaching introductory programming

courses. Some of these are more appropriate for CS0 and some for CS1, but all attempt

to replace the highly textual nature of programming with visual representations and

animations.

Learning to program can be an overwhelming task for students regardless of their

learning style. The number and complexity of topics, the use of languages not designed

for teaching, and students lacking basic problem solving skills can combine to make

learning programming in an introductory programming course an overwhelming task. As

a result, CS instructors are desperate to find ways to overcome these obstacles. Herbert

(2011) proposes that to make learning programming easier, one must minimize the syntax

www.manaraa.com

36

of the programming language being used and provide visual feedback to the students to

aid in conceptualization of the programming constructs. In addition, Adams (2007)

suggests that instructors must be able to capture the students attention through intriguing

examples that will motivate today’s CS students to learn. As a result, visual technologies

are being explored as a way to present difficult concepts in a manner that is easier to

visualize and simpler to use.

Poorly Designed Introductory Programming Courses

Another factor affecting student retention is the fact that many introductory

programming courses are simply poorly designed (Beaubouef & Mason, 2005; Carlisle,

2009). It can be extremely difficult to design a course or sequence of courses that can

successfully teach today’s students to program. Ironically, while college level instructors

of CS courses typically have the background knowledge required of a practitioner or

researcher in the CS field, they often lack exposure to the educational background that is

often necessary to convey knowledge correctly, reliably and effectively (Gal-Ezer &

Harel, 1998). Given that CS is a constantly evolving field, the introductory programming

courses are quite complex in nature and CS education has not historically been

accommodating to visual learners. With lower enrollments in CS, retaining the students

that are already in the major is crucial. Because the most crucial point for retention is in

the introductory CS courses (Moskal et al., 2004; Forte & Guzdial, 2004; Chen & Morris,

2005; Herrmann et al., 2003; Talton et al., 2006; Boyer et al., 2007), CS educators must

design and deliver courses that will enhance student success and retention.

www.manaraa.com

37

Relationship of the Literature to the Study

Considering the factors identified as affecting both student success and retention

in introductory programming courses and the solutions that had been proposed to address

these factors, this study focused on one category of solutions in particular, the use of

visual technologies. Each of the visual technologies presented in the literature review

was examined in relation to its use and effectiveness as it relates to student success and

retention in the introductory programming courses. A rubric was developed in order to

rate the visual technologies in each category (visual programming environments and

visual algorithm development tools) that had been reported in the literature as beneficial

to student learning and success in introductory programming courses. The rubric was

then used to rate the visual technologies according to criteria such as academic

acceptance, availability of supporting textbooks, availability of student/academic

versions, financial costs, system requirements, usability, OO support, and appropriateness

for teaching fundamental programming concepts.

Ultimately, the goal of the study was to develop and implement curricula that

incorporated visual technologies in the introductory CS programming courses in order to

improve student retention and achievement. Based upon the findings presented in the

literature review and the rating of the visual technologies as appropriate for use in CS1,

the CS1 course at ETSU was redeveloped to incorporate multiple visual technologies in

an attempt to effectively increase student learning in CS1 therefore potentially increasing

student performance and retention.

www.manaraa.com

38

Chapter 3

Methodology

Problem and Goal

Decreasing enrollments, lower rates of student retention and changes in the

learning styles of today’s students are all issues that the CS academic community is

currently facing. As a result, CS educators are being challenged to find the right blend of

technology and pedagogy for their curriculum in order to help students persist through

the major and produce strong graduates. Learning to program can be an overwhelming

task for introductory programming students for many reasons. The number and

complexity of topics, the use of languages not designed for teaching, and students lacking

basic problem solving skills can combine to make learning programming in an

introductory programming course (i.e., CS1) an overwhelming task. Visual technologies

have been explored as a way to present difficult concepts in a manner that is easier to

visualize and simpler to use. Visual technologies make learning programming easier by

minimizing the syntax of the programming language being used and providing visual

feedback to the students to aid in conceptualization of the programming constructs. The

goal was to improve student retention and performance by incorporating visual

technologies in the CS1 programming course at ETSU.

www.manaraa.com

39

Research Design

Instructional design and quasi-experimental research methods were used to

develop and implement a curriculum that incorporates visual technologies in the

introductory CS programming course, CS1. The CS1 course was redesigned and

redeveloped to incorporate visual technologies using the ADDIE approach. The ADDIE

approach is a generic approach to instructional design which involves a five-phase

process: Analysis, Design, Development, Implementation and Evaluation (Molenda,

2003; http://www.instructional.org/models/addie.html). Each phase of the ADDIE

approach is described in detail in the approach section pertaining to the redesign of the

CS1 course.

A quasi-experimental study, using the Post-Test Only Nonequivalent Groups

Design approach, was implemented to perform assessment during the evaluation phase of

the ADDIE approach to the redesign of the CS1 course at ETSU. Quasi-experimental

designs are well suited for evaluation of educational programs when random assignment

of control and treatment groups is not feasible (Gribbons & Herman, 1997; Trochim &

Donnelly, 2008; Gay & Airasian, 2003). This type of educational research is frequently

used when entire classrooms or entire sections of a course are being evaluated (Gribbons

& Herman, 1997; Trochim & Donnelly, 2008; Gay & Airasian, 2003). This approach

was, therefore, the most appropriate for the proposed study.

In experimental research, the researcher manipulates the independent variable(s)

and observes the effect on the dependent variable(s) (Gay & Airasian, 2003). The

independent variable was the curriculum used in the CS1 course at ETSU. The

http://www.instructional.org/models/addie.html

www.manaraa.com

40

dependent variables were the effects that the implemented curriculum had on student

performance in CS1 and retention as measured by persistence to CS2.

The effects of the curriculum were observed through the comparison of two

groups. The control group was the collection of students who took the original version of

the CS1 course (instruction without the use of visual technologies) at ETSU during the

first semester of the study while the treatment group was the collection of students

enrolled in the CS1 course during the second semester of the study in which the revised

curriculum (instruction with the use of visual technologies) was implemented.

Analysis of the data collected from both the control group and the treatment group

has provided conclusions on the effect of the newly designed curriculum with visual

technologies on student performance and retention in the introductory programming

curriculum. There are many different kinds of observational data measures that have

been used to evaluate the impact of visualization in novice programming environments.

Some of the most common data measures include grades on coursework throughout the

semester, final grades for the course, and course retention rates (Gross & Powers, 2005;

Moskal et al., 2004; Naps et al., 2003). Therefore, these measures are what were

collected and analyzed in this research in regard to determining the relationship between

the independent and dependent variables among the control and treatment groups.

Instrumentation

Instruments were developed to assess student learning throughout the CS1

classes. One set of instruments were the checkpoints that were given after a topic had

been presented to the students and after the students had completed a programming

www.manaraa.com

41

assignment on that topic. The checkpoints were administered through an online course

delivery system. The course delivery system provided statistics on the overall student

performance on each checkpoint as well as student performance on each question of the

checkpoints. All checkpoints were verified and approved by the CSCI Introductory

Programming Committee at ETSU. This process involved the CSCI Introductory

Programming Committee evaluating the checkpoint and providing feedback on

recommended changes. The checkpoint was then modified based on the feedback and

was reevaluated by the committee. The checkpoints can be found in Appendix A.

In addition to the checkpoints, a short questionnaire was administered at the

beginning of the semester to collect information about the students’ majors. It was also

used to determine if any students were repeating the course or if they were under 18 so

their data could be excluded from the data collection set. The questionnaire is included in

Appendix A.

Experts

Throughout the redesign process and upon completion of the course redesign, the

new curriculum and data collection instruments were presented to the CSCI Introductory

Programming Committee in the Department of Computing at ETSU for review. This

standing departmental committee is responsible for any decisions regarding the

introductory programming courses within the department. Members of this committee

include four tenured Full Professors each with a Ph.D. in CS, two tenured Assistant

Professors each pursuing a Ph.D. in CS, one tenure-track Assistant Professor with a Ph.D.

in CS and one Lecturer with a Ph.D. in IS. All members of the committee are actively

www.manaraa.com

42

involved in teaching one or more of the courses in the introductory programming

sequence. Their detailed information is provided in Table 1.

Table 1

Experts/Members of the CSCI Introductory Programming Committee at ETSU

Approach

Research Question 1: What are the factors attributable to poor performance and low

retention rates and what solutions have been reported?

The literature served to identify the major factors that are attributable to the poor

performance and low retention rates in introductory CS programming courses. The

literature review focused on the factors affecting student success and retention in

introductory programming courses and the approaches being proposed to alleviate these

factors such as the use of visual technologies. Two specific categories of visual

technologies were researched, those being used to support algorithm development and

those supporting program development.

Name Degree Held Rank # years teaching

experience

Freshman

level courses

taught

Dr. Don Bailes Ph.D. in CS Full Professor 40 CS1, CS2

Dr. Gene Bailey Ph.D. in CS Full Professor 45 CS0, CS1, CS2

Dr. Marty Barrett Ph.D. in CS Full Professor 26 CS1, CS2

Dr. Suzanne Smith Ph.D. in CS Full Professor 27 CS0, CS1, CS2

Dr. Jessica Keup Ph.D. in IS Lecturer 6 CS0

Mr. Jeff Roach Pursuing Ph.D. in CS Asst. Professor 10 CS1, CS2

Dr. Jay Jarman Ph.D. in CS Asst. Professor 7 CS1, CS2

Mrs. Kellie Price Pursuing Ph.D. in

Computing

Technology in

Education

Asst. Professor 19 CS0, CS1, CS2

www.manaraa.com

43

Research Question 2: How can the introductory course, CS1, be redeveloped and

implemented to incorporate visual technologies?

Using the ADDIE approach to instructional design, the CS1 course was

redesigned and redeveloped to incorporate visual technologies. The following sections

outline what took place during each phase of the course redesign.

Analysis

During the analysis phase, the learning styles of today’s students, the visual

technologies appropriate for use, and the instructional goals and objectives for the course

were identified relative to the CS1 course at ETSU. The literature review focused on the

learning styles of today’s CS students as one of the factors attributable to poor

performance and low retention rates due to teaching and delivery styles that do not relate

to today’s visual learners (Beaubouef & Mason, 2005; Stamey & Sheel, 2010; Oblinger,

2003; Frand, 2000; Howles, 2007; Sigle, 2008; Carlisle et al., 2004; Cardellini, 2002).

Visual technologies, that have been developed to support learning programming at the

introductory level, were also a focus of the literature review.

As a result of the literature review, a list of visual technologies used to support

both algorithm and programming development that are most appropriate for CS1 was

developed. There were several factors considered in selecting visual technologies to be

used in CS1 at ETSU, including but not limited to the learning styles of CS students,

goals and objectives for the CS1 course, cost, availability, and support for topics

presented in CS1. The list of visual technologies and the factors to be considered were

presented to the Introductory Programming Committee for evaluation and selection of

one or more technologies to be incorporated into CS1 at ETSU. Ultimately, it was

www.manaraa.com

44

decided that two visual technologies, Alice and RAPTOR, would be appropriate for use

in the CS1 course at ETSU.

There were several considerations that led the Introductory Programming

Committee to select Alice for incorporation into CS1. In CS1, the OO programming

concepts of objects and classes are difficult hurdles for students because these topics are

abstract and text-based only. Alice has been proven successful in CS0 courses because it

allows students to see objects performing tasks on the screen in their virtual world as a

3D animation as shown in Figure 12. Working with these tangible objects in an

environment such as Alice helps to prepare students for these abstract concepts when

encountered in CS1 (Gaddis, 2011a; Brown, 2008; Mullins, Whitfield & Conlon, 2008)

as demonstrated in Figure 13.

Figure 12. An Alice application that allows acceleration and braking using a Car class.

www.manaraa.com

45

Another benefit of using Alice is that the visual nature of its 3-dimensional

environment allows students to create animations and games, thus igniting their

imagination and increasing their motivation and effort (Gaddis, 2011a, Brown, 2008) and

potentially causing an increase in student interest, understanding and retention (Anewalt,

2007; Brown, 2008). Another consideration for the use of Alice is the support provided

by Carnegie Mellon University. Carnegie Mellon provides the Alice software for free,

provides training workshops for college and university faculty nationwide, and maintains

a website that provides resources for teaching Alice and supports an online community of

Alice users (http://www.alice.org). Another consideration was that several instructors on

the Introductory Programming Committee were already familiar with Alice having

attended Alice workshops and having used Alice in the CS0 course at ETSU.

The selection of RAPTOR for CS1 at ETSU was based upon several

considerations as well. Ideally, a program is designed using an algorithm, acting as the

Figure 13. A Java implementation of an application using a similar Car class that allows for

acceleration and braking.

http://www.alice.org/

www.manaraa.com

46

blueprint for the program, before it is written in a programming language. Developing

the algorithm is where much of the problem solving in the programming process occurs.

Many students tend to struggle with algorithm development because it is traditionally a

paper-and-pencil activity and their algorithms tend to lack the detail needed to adequately

solve the problem at a level that can easily be translated into a computer program. Figure

14 illustrates the different levels of detail that are often included in student algorithms.

Algorithms A and B lack sufficient detail for a complete solution while Algorithm C has

enough detail to be thoroughly tested and translated directly into code. If a student writes

an algorithm that looks like Algorithm A or Algorithm B, it will be hard for the student to

adequately test the algorithm through desk checking (i.e., manually traversing through the

steps of the solution with real data as input and observing whether or not the resulting

actions or output was correct) because it lacks sufficient detail. This lack of detail would

also cause the algorithm to be too difficult to translate directly into code. Even if the

student writes an algorithm with sufficient detail, such as Algorithm C, it will be time

consuming to desk check the algorithm by stepping through the steps one at a time and

performing the math, ultimately making it less likely that the student will check it at all

and therefore simply assume that the algorithm will work. As has been observed in CS1

at ETSU over the years, many students do not write an algorithm unless forced to and the

result is generally a solution similar to Algorithm A.

www.manaraa.com

47

Figure 14. Examples of algorithms written in pseudocode.

In contrast, RAPTOR is an algorithm development tool whose environment visually

supports the algorithm development process. RAPTOR, which represents algorithms

using flowcharts, is beneficial to students because it has an easy-to-use, drag-and-drop

environment and it represents the solution to a given programming problem in a visual

manner as opposed to a text-based solution. Another benefit of RAPTOR was its ability

to execute an algorithm. Traditionally, the correctness of algorithms is checked through a

manual activity called desk checking. RAPTOR automates the desk checking process by

providing dialog boxes for input and output operations and by highlighting each executed

step of an algorithm as it is encountered. Figure 15 illustrates the same algorithm as

shown in Figure 14, with sufficient detail to be able to execute the solution. When the

Play button is clicked in RAPTOR, each step of the flowchart will be highlighted as it is

reached. The user will be prompted for input and the output will be displayed when

appropriate.

www.manaraa.com

48

Figure 15. Example of an algorithm written as a flowchart in RAPTOR.

RAPTOR visually animates the solution, making the desk checking process much more

interactive and easier to see where problems may occur, and therefore making it more

likely that students will develop and test an algorithmic solution before writing code.

Because RAPTOR has the ability to execute a solution, the solution must have enough

detail in order to be successfully executed in RAPTOR. This accomplishes the goal of

forcing the students to solve the problem at the level of detail needed, not only to

translate it into code, but to also adequately test the solution before writing the program

in a computer language. Finally, the RAPTOR software, user manuals, and resources for

teaching RAPTOR are provided for free on the website

(http://raptor.martincarlisle.com/).

The learning objectives of the CS1 course remained unchanged. These learning

objectives/outcomes have been approved by the CSCI department and are tied directly to

ABET learning outcomes. ABET is the accrediting agency for post-secondary education

http://raptor.martincarlisle.com/

www.manaraa.com

49

programs in computing and engineering, and the curriculum at ETSU is accredited in CS,

IS and IT. While the course learning outcomes, which are listed in Appendix B, were not

changed, the curriculum and instructional methods that were used to achieve these

learning outcomes were modified. The use of visual technologies pertained to two of

these learning outcomes which are to develop an object-oriented design and to program

in Java, an object-oriented programming language.

Design

During the design phase, the selected visual technologies, Alice and RAPTOR,

were incorporated into the course content and instructional delivery methods. A detailed

course calendar was also created outlining the coverage of the topics for the course on a

semester timeline. The course calendar can be found in Appendix B.

It was also during this phase that the assessment techniques to be used for the

quasi-experimental part of this research project were designed. It was decided that

student performance would be assessed throughout the semester at several key points:

upon completion of each major topic and upon completion of the course. The major

topics in the course selected for assessment were selection (decisions), repetition

(looping), and objects and classes. Assessment was to be performed through the use of

checkpoints (i.e., quizzes covering the respective topics). It was determined that

evaluating student learning at certain points throughout the semester as major topics were

presented would allow for the evaluation of student performance on a topic-by-topic basis

as well as on the course as a whole. This type of evaluation was helpful in determining if

the use of visual technologies was particularly beneficial in some aspects of the course

more than others.

www.manaraa.com

50

Development

During the development phase, detailed lecture notes and in-class exercises were

developed to incorporate the use of RAPTOR to present the course material related to

selection and repetition and the use of Alice to present the topics of objects and classes.

A handout on problem solving and programming, included in Appendix C, was also

developed; this handout was designed for the students in CS1 during the treatment

semester. The handout explains the process of developing a solution to a problem using

both pseudocode and flowcharts. It highlights the need for both testing the solution and

including enough detail in a solution so that it is not only testable but ready to be

translated into a programming language. This handout was designed as part of the

students’ introduction to RAPTOR.

Checkpoints for the selected topics were also developed during this phase. The

checkpoints, which were developed by the researcher, were evaluated and approved by

the CSCI Introductory Programming Committee. It was determined that all sections of

the CS1 course would administer the same checkpoints throughout the semester.

A questionnaire was also developed to collect demographic information from the

students enrolled in CS1 during the second semester of the study. Information collected

included the students’ majors, whether or not they had previously attempted the CS1

course at ETSU, and whether or not they were at least 18 years of age. Students who

indicated they had previously attempted CS1 or were under 18 years of age were

excluded from the study.

www.manaraa.com

51

Implementation

 The implementation phase was the phase during which the CS1 course was taught

in its original form the first semester and in its revised form the following semester. Prior

to the implementation of the revised CS1 course, all instructors of the course were trained

on the new visual technologies being used throughout the course. The instructors were

also provided with the newly developed course materials including lecture notes, in-class

exercises, and checkpoints for use in the second semester of the study.

 Early in the second semester of the study, prior to any checkpoints being

administered, the treatment group was given the demographics questionnaire. The

questionnaire collected the information needed to determine if they should be excluded

from the study based on age and whether or not they were repeating the course. They

were also presented with a description of the study to be conducted, and IRB consent

forms were distributed. ETSU’s IRB required the students’ consent before they could be

included in the study. The researcher was not aware of which students or how many

students had elected to participate in the study until after the final grades had been

recorded as required by ETSU’s IRB procedures.

For introduction of selection and repetition topics, RAPTOR, the visual

technology supporting algorithm development, was incorporated into both the lecture and

hands-on activities in the labs. When introducing decisions using the if-else statement,

during the first semester of the study whiteboards and overhead presentations were used

to present students with a sample problem and then class discussion would follow to

engage the students in developing a solution to the problem. This solution was written in

pseudocode which is a textual solution to algorithm development (as shown in Figure

www.manaraa.com

52

14). The pseudocode was then tested by manual desk checking. The pseudocode was

used as the guide from which the actual Java solution to the problem was created. With

this scenario, it has been observed that students at ETSU would skip the step of creating

the algorithm (i.e., writing down the pseudocode solution) and would begin immediately

writing the Java code. This approach usually resulted in a poorly designed and tested

solution and a much longer coding process because the debugging phase in this scenario

included debugging the solution to the problem as well as the code that was written to

solve the problem. In contrast, when using RAPTOR, the students were presented with a

problem, and class discussion would follow to engage the students in developing a

solution to the problem. However, instead of writing the solution out in pseudocode on a

whiteboard, the solution was implemented in RAPTOR using flowcharts. This gave the

students a more visual picture of the solution. The biggest advantage, however, was that

the solution could then be executed and students could actually give input, watch the flow

of execution, and see the output. Alice, the visual technology supporting program

development, was used to introduce the topics of objects and classes in both the lecture

and the lab. During lectures, an Alice world was created, and the instructor would begin

to place things in the world as a way of introducing the classes, such as a bunny, that are

provided in Alice. An instance of the bunny class would then be added to the world

(explaining that this was an object, an instance of the bunny class). Eventually adding

more instances of the bunny class to the world would demonstrate that each one was its

own instance of the bunny class and had its own characteristics, identity, and actions that

could be performed. This allowed the students to see these abstract object-oriented

concepts of objects and classes using real-world examples. The goal was to introduce

www.manaraa.com

53

these abstract concepts visually, instead of just through the Java programming language,

therefore helping students to better understand the concepts. Students were then given

problems to solve using Alice in the lab. The problems selected were similar to problems

that they were soon to be given to solve in the Java programming language. By being

given the same problem to be implemented both in Alice and in Java, students were able

to make the connection between objects and classes they could see and manipulate in

Alice and the objects and classes they would need to implement in Java code.

Evaluation

 The revised instructional approach was evaluated. As described in the section

pertaining to research question 3, analysis was performed to evaluate the effectiveness of

using visual technologies in the CS1 course with respect to student performance and

retention rates. The evaluation phase began at the close of the second semester of the

study. Due to ETSU IRB restrictions, evaluation could not occur until final grades had

been recorded at the end of the treatment semester.

Research Question 3: What are the outcomes of teaching the redesigned course?

 During the evaluation phase of the ADDIE approach to the redevelopment and

redesign of the CS1 course at ETSU, assessment was performed using the Post-Test Only

Nonequivalent Groups Design approach. This quasi-experimental design was chosen

because it is well suited for evaluation of educational programs when random assignment

of control and treatment groups is not feasible (Gribbons & Herman, 1997; Trochim &

Donnelly, 2008; Gay & Airasian, 2003). Most often with this approach, intact groups

www.manaraa.com

54

that are as similar as possible are used as the treatment and control groups (Trochim &

Donnelly, 2008).

The control group was the collection of students who took the original version of

the CS1 course (instruction without the use of visual technologies) at ETSU during the

first semester of the study. The treatment group was the collection of students enrolled in

the CS1 course during the second semester of the study, in which the revised curriculum

(instruction with the use of visual technologies) was implemented. During a typical

semester, there are four to five sections of the CS1 course with a total of 65-120 students

and two to three instructors. These two groups have been considered equivalent since the

students had met the same admission standards for the university and the same

prerequisite requirements for the course.

The control group consisted of a total of 93 students, 47 CS majors and 46 non-

CS majors. Of the 93, 10 dropped the course, 52 passed and 31 failed. In addition, 7 of

the 93 had completed CS0 prior to taking CS1 and 5 of those 7 successfully completed

CS1. The treatment group consisted of 80 students who elected to participate in the IRB

study, 62 CS majors and 18 non-CS majors. Of the 80, 3 dropped, 53 passed and 24

failed. In addition, 4 of the 80 had completed CS0 prior to taking CS1 and 2 of those 4

successfully completed CS1.

The courses, which are scheduled for two hours twice a week, were taught in a

lecture/lab format. The first two-hour class meeting each week was done in a

conventional lecture methodology in which the instructor covered topics regarding

problem solving, algorithm development, the software development process,

programming and the syntax of the programming language being used. During the

www.manaraa.com

55

second two-hour class meeting each week, the students were in a computer lab.

Instruction typically took place during the first hour of the lab. This instruction generally

consisted of additional lecturing on the topics presented that week or an exercise in which

the instructor stepped through the solution to a given problem incorporating that week’s

lecture topics. The second hour was typically used for completion of hands-on, in-class

exercises by the students that related directly to the lecture topics for that week.

 Using the assessment instruments developed, the instructors collected data at key

points throughout each semester as well as at the end of each semester to evaluate student

performance. Student retention was measured by observing whether or not the students

remained in CS1 (did not withdraw from the course prior to the end of the semester) and

persisted in the program by enrolling in the CS2 course upon completion of the CS1

course with a passing grade of C- or better.

Research Question 4: What conclusions may be drawn regarding the value of the new

curricula in terms of student performance and retention?

 Analysis has been performed on the data collected from both the control group

and the treatment group during both semesters. This analysis provides conclusions on the

effect of the inclusion of visual technologies on student performance and retention in the

introductory programming course. The results of the analysis are presented in Chapter 4

and conclusions on the effect of visual technologies on student performance and retention

are presented in Chapter 5.

The analysis of student performance included the use of a t-test. A t-test for

independent samples is appropriate for determining whether the observed difference

www.manaraa.com

56

between two independent groups is significant. It works by determining if the difference

is significantly larger than the difference expected solely based on chance (Gay &

Airasian, 2003). Therefore, the t-test for independent samples was used to determine the

significance of difference between the control group and treatment group on the

following measures: calculated final grade and checkpoints for each major course topic.

A chi-squared test was used for comparison of persistence rates to CS2 between the

control group and treatment group. In the comparison of retention rates in CS1, the chi-

squared test was originally used, but yielded warnings due to the small sample sizes in

the retention data. As a result, the Fisher’s exact test was used instead. Because

retention and persistence in the major do not apply to non-majors, these two tests were

only applied to data collected pertaining to participants in each group who were CS

majors.

Data Collection

Using the assessment instruments developed, the instructors collected data at key

points throughout each semester as well as at the end of each semester to evaluate student

performance. Data collected includes student scores on the checkpoints given upon

completion of the coverage of each major topic as well as the final grade assigned to the

student for the course.

Student retention was measured by observing whether or not the students

remained in CS1 (did not withdraw from the course prior to the end of the semester).

Student persistence in the major was measured by observing whether or not the majors

enrolled in the CS1 course persisted in the program by enrolling in the CS2 course upon

www.manaraa.com

57

completion of the CS1 course with a grade of C- or better or by re-enrolling in the CS1

course if they did not make a satisfactory grade. This enrollment data was obtained from

the student information system at ETSU upon completion of the second semester of the

study.

Resources

Technologies

 Part of the research was to determine the pedagogical approach and which visual

technologies would be most effective when integrated into the introductory programming

courses. The visual technologies chosen to be incorporated into the CS1 course at ETSU

were Alice and RAPTOR, both of which were free to the students and the university.

Both software packages were installed in the lecture rooms and computer labs used by

CS1 students. Many of the CS1 students also installed RAPTOR and Alice on their own

personal computers as well.

Other technologies used included D2L, Microsoft Excel and Minitab. Microsoft

Excel was used to compile the data collected from the checkpoints and the student

enrollment data. Minitab was used to perform the analysis on the data. D2L

(Desire2Learn) is ETSU’s online learning management system through which course

materials and checkpoints were administered to the students.

People

 Experts within the department were solicited to review and evaluate the visual

technologies proposed, the manner of teaching and implementing these technologies in

www.manaraa.com

58

CS1, and the assessments used. These experts are members of the CSCI Introductory

Programming Committee, a standing committee in the Department of Computing at

ETSU whose charge is to make decisions regarding the introductory programming

courses within the department.

Permissions

 IRB permissions were received from both Nova Southeastern University and East

Tennessee State University. The IRB approvals are included in Appendix C. Students

who elected to participate in the second semester of the study as part of the treatment

group were required to sign an Informed Consent Document giving their permission to be

included in the study. These documents were collected and held by a departmental

colleague approved by the ETSU IRB and released to the researcher after final grades for

the course had been recorded.

Summary

 Incorporating visual technologies in teaching CS1 has helped to determine

whether such technologies effectively increased student retention and performance.

Based upon the level of effectiveness observed from teaching CS1 with visual

technologies as compared to teaching CS1 without visual technologies, the redesigned

course or portions of the redesigned course will be proposed for adoption by the entire

Department of Computing at ETSU. These results will also be presented to the CS

academic community through publications and conferences.

www.manaraa.com

59

Ideally, both CS students and faculty will benefit from this practice. Students will

benefit from an approach that satisfies their learning styles and their love of technology.

Since higher rates of student failure and lower rates of student retention in introductory

programming courses are significant problems in the CS academic community, any

approach that positively affects these rates will be welcomed by CS faculty.

www.manaraa.com

60

Chapter 4

Results

The fact that an overwhelming majority of today’s CS students are visual learners

(Howles, 2007; Sigle, 2008; Thomas, Ratcliffe, Woodbury, & Jarman, 2002) is one of the

factors attributable to the decreasing enrollments and lower rates of retention for many

CS departments (Chen & Lin, 2011; Gomes & Mendes, 2010; Gomes & Mendes, 2008;

Gomes & Mendes, 2007; Gomes, Carmo, Bigotte, & Mendes, 2006; Kuri & Truzzi,

2002). Therefore, the challenge that CS educators currently face is to find the right blend

of technology and pedagogy for their curriculum which will accommodate the current

learning styles of today’s CS students in order to help them be successful in their courses

and persist through the major. The introductory sequence of courses in the CS major is

where CS departments typically see the lowest retention rates (Zweben, 2008; Vegso,

2008; Yadin, 2011; Soe, Guthrie, Yakura, & Hwang, 2011; Guthrie, Yakura, & Soe,

2011; Becerra-Fernandez, Elam, & Clemmons, 2010; Sloan & Troy, 2008; Ali, 2009;

Moskal, Lurie & Cooper, 2004; Forte & Guzdial, 2004; Chen & Morris, 2005; Herrmann

et al., 2003; Talton, Peterson, Kamin, Israel, & Al-Muhtadi, 2006; Boyer, Dwight, Miller,

Raubenheimer, Stallman, & Vouk, 2007). Successful completion of the introductory

sequence of programming courses can be an overwhelming and sometimes impossible

task for introductory programming students for many reasons, including the number and

complexity of topics being presented, the use of languages not designed for teaching, and

www.manaraa.com

61

students’ deficiency in basic problem solving skills (Urness & Manley, 2011; Yadin,

2011; Chen & Morris, 2005; Beaubouef & Mason, 2005; Moskal et al., 2004). These

factors, combined with teaching that does not accommodate the visual learning style of

the majority of CS majors, can combine to make learning programming in an

introductory programming course (i.e., CS1) a difficult task. As a result, visual

technologies have been explored as a way to present difficult introductory programming

concepts in a manner that is easier to visualize and simpler to use.

The goal was to improve student retention and performance in the CS1 course at

ETSU. The course has been redesigned and redeveloped to incorporate the use of visual

technologies in introducing the topics of selection, repetition, objects and classes. Data

collected throughout the course has been used to determine the effectiveness of the visual

technologies on student performance in CS1 and persistence in the major.

Implementation

During the first semester of the study, the major topics in CS1 were presented to

the control group in a manner which did not involve the use of visual technologies.

Course topics were presented in a lecture format through the use of presentation slides

and examples worked interactively in class. In-class examples involved the presentation

of a problem, solving the problem by writing an algorithm solution in pseudocode, desk-

checking the algorithm and then translating that algorithm into Java code for testing. All

of these activities were done using paper and pencil or the whiteboard. The lab sessions

were meant to supplement the lecture presentations by allowing the students to follow the

same manual process of writing an algorithmic solution and then implementing that

www.manaraa.com

62

solution into Java code. An observation of this method of teaching was that, unless

students were forced to turn in the algorithmic solution, most students would skip that

step and begin the coding process immediately. If forced to submit an algorithmic

solution, many students would complete the coding process and then write up a

corresponding algorithm for submission, thus defeating the purpose for writing an

algorithmic solution.

During the second semester of the study, the major topics in CS1 were presented

to the treatment group in a manner which incorporated the use of visual technologies.

RAPTOR was introduced in the first half of the semester when presenting the topics of

selection (executing decisions in a computer program) and repetition (causing sections of

program code to repeat). By using RAPTOR, students were able to visually see the

creation of a solution using flowcharts. RAPTOR also allowed the algorithmic solution

to be executed as though it were a program. With this feature, the students could see the

steps executed and test the solution prior to ever writing any code, as can be seen in

Figure 16.

Figure 16. Execution of a flowchart solution in RAPTOR.

www.manaraa.com

63

As a RAPTOR flowchart was being executed, the students could observe the outcomes

associated with corresponding decisions and visually identify where problems existed in

the proposed solution. In other words, students could ensure their proposed solution was

correct before they began writing program code. Students were not required to use

RAPTOR outside of class; however, they responded positively to the use of RAPTOR in

the classroom. As a result, many students gravitated toward the use of RAPTOR to

develop algorithmic solutions for their assigned projects as opposed to the alternative of

manually writing out pseudocode (i.e., textual algorithms). The positive response from

students was in the form of verbal feedback to the instructors and written feedback on

student evaluations of the courses. Students indicated that the use of RAPTOR helped

them to visualize the concepts thus understanding them better and that they preferred to

develop their solutions in a more visual, rather than textual, manner. Students also liked

the fact that they could more easily test their solutions before implementing them in the

Java programming language.

Alice was introduced in the second half of the semester when presenting the

topics of objects and classes. By using Alice, students were able to see visual

representations of classes, as shown in Figure 17, and the instantiation of objects of those

classes, as shown in Figure 18. They were able to visualize the concepts associated with

objects and classes, such as the state (current properties of the object), behavior (actions

associated with the object) and identity (unique name) of an object as illustrated in Figure

19.

www.manaraa.com

64

Figure 17. Selecting a Class in Alice.

Figure 18. Instantiating an object of a class in Alice.

Figure 19. State, Behavior and Identity of an object in Alice.

www.manaraa.com

65

To evaluate student comprehension and mastery of major topics in CS1,

checkpoints were administered as quizzes to the control group during the first semester of

the study and to the treatment group during the second semester of the study. Each

checkpoint was administered to the students after the topic had been presented and

students had been given the opportunity to complete lab exercises and a major

programming assignment on that topic. Once final grades were recorded at the end of the

second semester of the study, grades from these checkpoints were compiled into an Excel

spreadsheet, and Minitab was used to analyze the results.

Evaluation

To determine if there were any statistically significant improvements in student

performance in the treatment group as compared to the control group, t-tests were

performed on the data. A P-value of 0.05 or less as a result of the t-test indicates

statistically significant improvement between the performance of the control group and

the treatment group. A P-value between 0.05 and 0.10, although not considered

statistically significant, indicates improvement between the performances of the two

groups.

Selection

The selection checkpoint was designed to test students’ comprehension of

decision constructs in programming. The checkpoint questions were designed to cover

simple if/else statements, nested if/else statements, switch statements, complex logic and

some syntax related to the Java programming language. Because the use of RAPTOR

www.manaraa.com

66

does not directly pertain to switch statements, complex logic and Java syntax, questions

related to those topics were not included in the comparisons. Questions 1, 2, 10, and 11

relate to simple if/else statements; and questions 3, 4, and 6 relate to nested if/else

statements. As a result, the set of questions 1, 2, 3, 4, 6, 10, and 11 comprise the

selection checkpoint as it relates to the comparisons being performed.

As can be seen in Table 2, the results of the performance on the selection

checkpoint are positive. When comparing the treatment and control groups in their

entirety with a t-test, the difference was significant at the 0.05 level. The treatment group

showed statistically significant improvement with an average of 92.4, compared to an

average of 83.2 for the control group. Then, a two-way analysis of variance was

performed to analyze the method of teaching and major simultaneously. Majors

performed better than non-majors in both groups (treatment and control). The treatment

group performed better on average than the control group for both majors and non-

majors, showing statistically significant improvement. The results of the Two-way

ANOVA, as shown in the Interaction Plot for Selection in Figure 20, indicate statistical

significance in the improvement in the mean score for the treatment group when

compared to the control group, regardless of major.

www.manaraa.com

67

Table 2

Figure 20. Two-way ANOVA Interaction Plot for Selection.

The complete results of the selection checkpoint are shown in Table 3. As can be

seen, the results of the performance on the simple if/else statements subsection of the

selection checkpoint are very positive overall. Average scores were 9 to 11 points higher

for the treatment group as compared to the control group. The results of the nested if/else

statements subsection were also positive overall with average scores ranging from 4 to 10

points higher for the treatment group as compared to the control group.

Comparison of Student Performance on Selection Topic – Statistical Analysis

Using a t-test to compare performance between the Control Group and Treatment Group

 N Mean Std. Dev. P-Value

Entire Class Control Group 74 83.2 16.6
0.000

Treatment Group 77 92.4 10.0

Means by Treatment and Major

Control Major 40 84.6 16.3

 Non-Major 34 81.5 17.1

Treatment Major 60 92.9 9.7

 Non-Major 17 90.8 11.2

Two-Way ANOVA to analyze simultaneously Treatment and Major

Factor Treatment Major Interaction

P-Value 0.001 0.290 0.835

 indicates a P-value < 0.05 indicating improvement of statistical significance

* indicates a P-value between 0.05 and 0.10 indicating positive improvement

www.manaraa.com

68

Table 3

Repetition

The repetition checkpoint was designed to test students’ comprehension of

looping constructs in programming. The checkpoint questions were designed to cover

two types of looping, count-controlled loops and event-controlled loops, as well as a

looping algorithm written in pseudocode. Because the use of RAPTOR does not directly

pertain to complex logic and Java syntax, questions related to those topics were not

included in the comparisons. Questions 1, 2, 3, and 6 relate to count-controlled loops;

questions 4, 5, and 7 relate to event-controlled loops; and question 10 is a pseudocode-

Comparison of Student Performance on Selection Checkpoint – Descriptive

Statistics

 Entire Class Majors Non-Majors

 N Mean Std. Dev. N Mean Std. Dev. N Mean St. Dev.

Question 1 Control 74 98.6 11.6 40 100.0 0.0 34 97.1 17.1
Treatment 77 100.0 0.0 60 100.0 0.0 17 100.0 0.0

Question 2 Control 74 83.8 37.1 40 80.0 40.5 34 88.2 32.7
Treatment 77 90.9 28.9 60 91.7 27.9 17 88.2 33.2

Question 10 Control 74 86.5 34.4 40 92.5 26.7 34 79.4 41.0

Treatment 77 94.8 22.3 60 96.7 18.1 17 88.2 33.2

Question 11 Control 74 63.5 48.5 40 67.5 47.4 34 58.8 50.0

Treatment 77 92.2 27.0 60 95.0 22.0 17 82.4 39.3

If/Else

Subtopic

Control 74 83.1 19.9 40 85.0 20.3 34 80.9 19.5

Treatment 77 94.5 11.9 60 95.8 9.4 17 89.7 17.8

Question 3 Control 74 87.8 32.9 40 92.5 26.7 34 82.4 38.7

Treatment 77 81.8 38.8 60 80.0 40.3 17 88.2 33.2

Question 4 Control 74 98.6 11.6 40 97.5 15.8 34 100.0 0.0

Treatment 77 98.7 11.4 60 98.3 12.9 17 100.0 0.0

Question 6 Control 74 63.5 48.5 40 62.5 49.0 34 64.7 48.5

Treatment 77 88.3 32.3 60 88.3 32.4 17 88.2 33.2

Nested

If/Else

Subtopic

Control 74 83.3 22.2 40 84.2 21.3 34 82.4 23.5

Treatment 77 89.6 16.5 60 88.9 17.0 17 92.2 14.6

Overall

Performance

Control 74 83.2 16.6 40 84.6 16.3 34 81.5 17.1

Treatment 77 92.4 10.0 60 92.9 9.7 17 90.8 11.2

www.manaraa.com

69

based looping algorithm question. As a result, the set of questions 1, 2, 3, 4, 5, 6, 7, and

10 comprise the repetition checkpoint as it relates to the comparisons being performed.

The results of the performance on the repetition checkpoint, as shown in Table 4,

indicate improvement that is on the verge of statistical significance. When comparing the

treatment and control groups in their entirety with a t-test, although not significant at the

0.05 level, the difference was on the verge of statistical significance with a P-value of

0.054. The treatment group showed positive improvement overall with an average of 74.8

compared to an average of 68.5 for the control group. Then, a two-way analysis of

variance was performed to analyze the method of teaching and major simultaneously.

Majors performed better than non-majors in both groups (treatment and control). The

treatment group performed better on average than the control group for both majors and

non-majors. However, there is so much individual variability in the scores that the

differences are not significant when tested. The results of the Two-way ANOVA can

also be seen in the Interaction Plot for Repetition in Figure 21. This visually

demonstrates the fact that the mean score for the treatment group on the repetition

checkpoint is higher than that for the control group, regardless of major. The graph also

indicates that there is a more significant improvement for majors than for non-majors.

www.manaraa.com

70

Table 4

Figure 21. Two-way ANOVA Interaction Plot for Repetition.

The complete results of the repetition checkpoint are shown in Table 5. The

biggest improvement on the repetition checkpoint was in the set of questions related to

count-controlled looping. Results of the performance on this subsection of the selection

checkpoint are very positive overall. Average scores were 10.2 to 18.1 points higher for

the treatment group as compared to the control group, indicating significant

improvement. The results of the performance on the event-controlled looping subsection

Comparison of Student Performance on Repetition Topic – Statistical Analysis

Using a t-test to compare performance between the Control Group and Treatment Group

 N Mean Std. Dev. P-Value

Entire Class Control Group 65 68.5 24.6
0.054*

Treatment Group 68 74.8 20.4

Means by Treatment and Major

Control Major 38 70.4 23.9

 Non-Major 27 65.8 25.9

Treatment Major 54 88.6 11.2

 Non-Major 17 85.3 13.7

Two-Way ANOVA to analyze simultaneously Treatment and Major

Factor Treatment Major Interaction

P-Value 0.346 0.131 0.642

 indicates a P-value < 0.05 indicating improvement of statistical significance

* indicates a P-value between 0.05 and 0.10 indicating positive improvement

Treatment

7 7 . 5

7 5 . 0

7 2 . 5

7 0 . 0

6 7 . 5

6 5 . 0

T r e a t m e n t

Non-CS
CS

Major

I n t e r a c t i o n
 P l o t

 f o r
 Repetition

D a t a
 M e a n s

Control

www.manaraa.com

71

and the pseudocode question were also improved, but only by a few points therefore

indicating only slight improvement.

Table 5

Comparison of Student Performance on Repetition Checkpoint – Descriptive Statistics

 Entire Class Majors Non-Majors

 N Mean Std. Dev. N Mean Std. Dev. N Mean St. Dev.

Question 1 Control 65 84.6 36.4 38 78.9 41.3 27 92.6 26.7
Treatment 68 94.1 23.7 54 94.4 23.1 14 92.9 26.7

Question 2 Control 65 63.1 48.6 38 63.2 48.9 27 63.0 49.2
Treatment 68 82.4 38.4 54 85.2 35.9 14 71.4 46.9

Question 3 Control 65 50.8 50.4 38 57.9 50.0 27 40.7 50.1
Treatment 68 54.4 50.2 54 57.4 49.9 14 42.9 51.4

Question 6 Control 65 80.0 40.3 38 73.7 44.6 27 88.9 32.0
Treatment 68 88.2 32.5 54 88.9 31.7 14 85.7 36.3

Count

Controlled

Subtopic

Control 65 69.6 26.7 38 68.4 28.3 27 71.3 24.7

Treatment 68 79.8 20.8 54 81.5 19.5 14 73.2 24.9

Question 4 Control 65 81.5 39.1 38 84.2 37.0 27 77.8 42.4
Treatment 68 82.4 38.4 54 85.2 35.9 14 71.4 46.9

Question 5 Control 65 56.9 49.9 38 60.5 49.5 27 51.9 50.9
Treatment 68 69.1 46.5 54 66.7 47.6 14 78.6 42.6

Question 7 Control 65 69.2 46.5 38 78.9 41.3 27 55.6 50.6
Treatment 68 61.8 39.0 54 66.7 47.6 14 42.9 51.4

Event

Controlled

Subtopic

Control 65 69.2 30.8 38 74.6 23.8 27 61.7 37.8

Treatment 68 71.1 30.4 54 72.8 30.4 14 64.3 30.6

Question 10 Control 65 61.5 49.0 38 65.8 48.1 27 55.6 50.6

Treatment 68 66.2 47.7 54 68.5 46.9 14 57.1 51.4

Overall

Performance

Control 65 68.5 24.6 38 70.39 23.9 27 65.7 25.8

Treatment 68 74.8 20.4 54 76.6 19.7 14 67.9 22.3

Objects and Classes

The objects and classes checkpoint was designed to test students’ comprehension

of basic object-oriented concepts in programming. Questions not directly related to

declaring objects of classes or invoking class methods were not included in the

comparisons. As a result, the set of questions 7, 8, 9, and 10 comprise the objects and

classes checkpoint as it relates to the comparisons being performed.

www.manaraa.com

72

As can be seen in Table 6, the results of the performance on the objects and

classes checkpoint showed statistically significant improvement. When comparing the

treatment and control groups in their entirety with a t-test, the difference was significant

at the 0.05 level. The average score for the treatment group was 11 points higher than the

control group. Then, a two-way analysis of variance was performed to analyze the

method of teaching and major simultaneously. The treatment group performed better on

average than the control group for both majors and non-majors, showing statistically

significant improvement. The results of the Two-way ANOVA, as shown in the

Interaction Plot for Objects/Classes in Figure 22, indicate statistical significance in the

improvement in the mean score for the treatment group when compared to the control

group, regardless of major. The graph also indicates that there is a higher statistically

significant improvement for non-majors than majors.

Table 6

Comparison of Student Performance on Objects/Classes Topic – Statistical Analysis

Using a t-test to compare performance between the Control Group and Treatment Group

 N Mean Std. Dev. P-Value

Entire Class Control Group 62 64.5 32.2
0.034

Treatment Group 53 75.5 31.6

Means by Treatment and Major

Control Major 35 65.0 33.3

 Non-Major 27 63.9 31.3

Treatment Major 46 73.9 33.3

 Non-Major 7 85.7 13.4

Two-Way ANOVA to analyze simultaneously Treatment and Major

Factor Treatment Major Interaction

P-Value 0.048 0.489 0.403

 indicates a P-value < 0.05 indicating improvement of statistical significance

* indicates a P-value between 0.05 and 0.10 indicating positive improvement

www.manaraa.com

73

Figure 22. Two-way ANOVA Interaction Plot for Objects/Classes.

The complete results of the objects/classes checkpoint are shown in Table 7.

While the results of the objects/classes checkpoint were statistically significant among

the entire class, majors and non-majors, the biggest improvement on the objects/classes

checkpoint was among non-majors. For non-majors, average scores were 22 points

higher for the treatment group as compared to the control group.

Table 7

Comparison of Student Performance on Objects/Classes Checkpoint – Descriptive Statistics

 Entire Class Majors Non-Majors

 N Mean Std. Dev. N Mean Std. Dev. N Mean St. Dev.

Question 7 Control 62 38.5 49.0 35 36.8 48.9 27 40.7 50.1

Treatment 53 77.4 42.3 46 76.1 43.1 7 85.7 37.8

Question 8 Control 62 81.5 39.1 35 78.9 41.3 27 85.2 36.2

Treatment 53 69.8 46.3 46 69.6 46.5 7 71.4 48.8

Question 9 Control 62 69.2 46.5 35 71.1 46.0 27 66.7 48.0

Treatment 53 71.7 45.5 46 69.6 46.5 7 85.7 37.8

Question 10 Control 62 66.2 47.7 35 68.4 47.1 27 63.0 49.2

Treatment 53 83.0 37.9 46 80.4 40.1 7 100.0 0.0

Overall

Performance

Control 62 64.5 32.2 35 65.0 33.3 27 63.9 31.3

Treatment 53 75.5 31.6 46 73.9 33.3 7 85.7 13.4

Control

8 5

8 0

7 5

7 0

6 5

T r e a t m e n t

Mean

Non-CS
CS

M a j o r

I n t e r a c t i o n P l o t f o r Objects/Classes
D a t a

 M e a n s

Treatment

www.manaraa.com

74

Final calculated grade for the course

The results of the performance in the entire course, as measured by the final

calculated grade in the course, are presented in Table 8. When comparing the treatment

and control groups in their entirety with a t-test, positive improvement was observed for

the entire class, although not statistically significant at the 0.05 level. With an average

grade of 73.7, the treatment group performed higher than the control group which had an

average grade of 68.6. Then, a two-way analysis of variance was performed to analyze

the method of teaching and major simultaneously. Majors performed better than non-

majors in both groups (treatment and control) showing statistical significance. The

treatment group also performed better on average than the control group for both majors

and non-majors although not statistically significant. The results of the Two-way

ANOVA can also be seen in the Interaction Plot for Final Grade in Figure 23. This

visually demonstrates the fact that the mean score for the treatment group on the final

calculated grade is higher than that for the control group, regardless of major. It also

indicates that there is a significant difference between the average final calculated grade

for majors versus non-majors.

www.manaraa.com

75

Table 8

Figure 23. Two-way ANOVA Interaction Plot for Final Grade for the Course.

Student Retention and Persistence in the major

To determine if there was a statistically significant improvement in student

retention in the treatment group as compared to the control group, the Fisher’s exact test

was performed on the data comparing the rates of dropout among majors during the

semester. Because retention in the major does not apply to non-majors, this test was only

applied to participants in each group who were CS majors. The Fisher’s exact test was

Comparison of Student Performance on Final Calculated Grade – Statistical Analysis

Using a t-test to compare performance between the Control Group and Treatment Group

 N Mean Std. Dev. P-Value

Entire Class Control Group 81 68.6 26.6
0.093*

Treatment Group 77 73.7 21.5

Means by Treatment and Major

Control Major 45 72.3 27.0

 Non-Major 36 64.0 25.8

Treatment Major 60 75.5 19.8

 Non-Major 17 67.6 26.5

Two-Way ANOVA to analyze simultaneously Treatment and Major

Factor Treatment Major Interaction

P-Value 0.431 0.061* 0.962

 indicates a P-value < 0.05 indicating improvement of statistical significance

* indicates a P-value between 0.05 and 0.10 indicating positive improvement

 Control

7 5 . 0

7 2 . 5

7 0 . 0

6 7 . 5

6 5 . 0

T r e a t m e n t

 CS
Major

 Non-CS

I n t e r a c t i o n
 P l o t

 f o r
 Final Grade D a t a

 M e a n s

Treatment

Mean

www.manaraa.com

76

used, instead of the chi-squared test, because the values for the number of students who

dropped out were so low. As with the t-test, a resulting P-value of 0.05 or less indicates

statistically significant improvement between the performance of the control group and

the treatment group. A P-value between 0.05 and 0.10, although not considered

statistically significant, indicates improvement between the performances of the two

groups.

Among majors, the control group saw a 2% dropout rate with 1 major out of 47

dropping the course before the end of the semester. The treatment group saw a 3%

dropout rate with 2 majors out of 62 dropping the course before the end of the semester.

The resulting P-value of 1 indicates that these results were statistically the same.

A chi-squared test was used for comparison of persistence rates in the major

between the control group and treatment group. Persistence in the major is defined as

successful completion of CS1 and subsequent enrollment in CS2 or re-enrollment in CS1

if the student received a failing grade on the first attempt at the course. Because

persistence in the major does not apply to non-majors, this test was only applied to

participants in each group who were CS majors.

Among majors, the control group saw a 72% persistence rate with 34 out of 47

declared majors continuing in the CS major. The treatment group saw an increase in the

persistence rate with 84%, 52 of 62 declared majors, continuing in the CS major.

However, despite the fact that the persistence rate increased by 12% as shown in Table 9,

this was not a statistically significant change.

www.manaraa.com

77

Table 9

Comparison of Student Retention in CS1 and Persistence in the Major

 Enrolled the entire

semester

Dropped mid-

semester

P-Value

Retention in CS1 Control Group 46 (98%) 1 (2%)
1

Treatment Group 60 (97%) 2 (3%)

Continued in the

major

Dropped the

major

P-Value

Persistence in the CS

major

Control Group 34 (72%) 13 (28%)
0.144

Treatment Group 52 (84%) 10 (16%)
 indicates a P-value < 0.05 indicating improvement of statistical significance

* indicates a P-value between 0.05 and 0.10 indicating positive improvement

The analysis of the data collected indicates some level of improvement as a result

of incorporating visual technologies in CS1 at ETSU. Conclusions and implications

regarding the impact of the use of these visual technologies are presented in Chapter 5.

www.manaraa.com

78

Chapter 5

Conclusions, Implications, Recommendations and Summary

In this chapter, conclusions are drawn regarding the use of visual technologies in

the introductory programming course, CS1, as the research questions are answered.

Implications and recommendations are made regarding the impact of the findings as they

apply to CS education. Ideas for future research regarding the use of visual technologies

in CS education will also be presented.

Conclusions

Research Question 1: What are the factors attributable to poor performance and low

retention rates and what solutions have been reported?

The factors most commonly reported as attributable to poor performance and low

retention rates in the CS1 course are student misconceptions about the CS field, poorly

designed introductory programming courses, students being under-prepared for an

introductory programming course, number and complexity of topics being introduced,

use of industry-strength programming languages, and teaching and delivery styles that do

not relate to today’s visual learners (the majority of CS majors).

To address the problem of student misconceptions about the CS field, many

universities have included a course in their CS curriculum that introduces students to the

www.manaraa.com

79

field and the types of career opportunities that exist in the field. This type of course

focuses on what type of education is necessary for certain careers in the field and assists

the students in selecting from the different concentrations offered such as computer

science, information systems and information technology. ETSU has such a course;

however, it also focuses on helping students to be successful in the university setting,

practice time management skills and develop study skills. Therefore, this ETSU course is

restricted to incoming freshman who have declared CS as their major. Students who

transfer from other schools or other majors are not allowed to take this course and do not

reap the benefits of taking the course.

Introductory programming courses that are poorly designed affect the retention of

students in the CS1 course and the major. Three factors causing poorly designed CS1

courses are that the nature of introductory programming courses have become quite

complex, that CS is a constantly evolving field and that CS educators generally lack

exposure to educational theories and practices. These factors have made it hard for CS

educators to design CS1 courses that adequately cover the large number of topics

necessary to learn programming while also being accommodating to visual learners. The

number and complexity of topics introduced in the CS1 course is further complicated by

the trend for CS departments to want to provide students with exposure to and depth of

experience with industry-strength programming languages. This has prompted a change

from using languages designed for teaching programming concepts to using languages

that make it more difficult to teach programming concepts to novice programmers. The

use of industry-strength programming languages has also prompted a switch in the

programming paradigm from procedural to object-oriented. This change in programming

www.manaraa.com

80

paradigm at the introductory level has contributed not only to the number but more

importantly to the complexity of the topics introduced.

To address the problem of poorly designed introductory programming courses,

the Department of Computing at ETSU has encouraged its faculty to participate in faculty

development workshops related to improving teaching, course development and student

learning. Over the past several years, ETSU has invited guest lecturers to offer faculty

development workshops on improving courses and teaching. In 2011, Tom Angelo

offered a series of faculty development workshops presenting research-based strategies

for improving teaching, assessment and learning. In 2013, Harvey Brightman presented a

series of teaching workshops designed to help faculty identify critical factors that affect

student performance and demonstrate how to develop a course framework and course

presentations designed to stimulate student interest in a subject. These types of faculty

development workshops offer CS faculty the opportunity to supplement their CS

knowledge and background with the tools necessary to develop courses that can

effectively present subject matter to students in an engaging manner.

Students who enter the CS major are often under-prepared for the major. These

students lack the problem solving skills and the pre-college preparation required to

succeed in a program that is very complex in its nature. To address this problem, many

CS departments have incorporated a CS0 course as a pre-requisite to the typical

introductory CS1 programming course. This type of course is generally designed to

improve students’ problem solving skills and introduce them to introductory

programming concepts without the complexity of industry-strength programming

languages. This is commonly accomplished through the use of simpler IDEs and visual

www.manaraa.com

81

technologies that make it easier for the student to create solutions to programming

problems and to visualize the concepts being presented.

The visual technologies that are used in CS0 courses not only simplify the

environment in which the student is learning basic programming constructs, but they also

accommodate the learning styles of the majority of today’s CS students by visually

presenting concepts and giving the students visual environments in which to develop

solutions and implement those solutions in code. In fact, visual technologies have been

developed to help address the majority of the factors identified as attributing to poor

performance and retention rates in introductory programming courses. However, these

technologies have not widely been adopted in CS1 courses. Reasons for the reluctance to

use visual technologies include the fact that CS faculty are unaware of the benefits of

using visual technologies to present introductory programming concepts, CS departments

are reluctant to replace the programming languages and development environments

currently being used with simpler, more visual languages and development environments,

and it may be difficult to cover all CS1 concepts if visual technologies are included in

CS1.

To address the problem of students being under-prepared for the major, the

Department of Computing at ETSU offers a CS0 course. However, due to the fact that

the department is under-staffed and cannot offer the number of sections necessary to

implement it as a requirement for all students, it is an elective course for CS majors.

Students who enter the major with low ACT math scores, have not performed well in

high school or college math courses, or have had no experience with programming are

www.manaraa.com

82

encouraged to take the CS0 course. Because it is not a requirement for the major, only a

fraction of students who enter the major actually take the CS0 course.

Research Question 2: How can the introductory course, CS1, be redeveloped and

implemented to incorporate visual technologies?

Using the ADDIE approach to instructional design, the CS1 course at ETSU was

redesigned and redeveloped to incorporate visual technologies. During the analysis

phase, the learning style of today’s students, the visual technologies appropriate for use in

introductory courses, and the instructional goals and objectives for the course were

identified for the CS1 course at ETSU.

Unlike many CS courses that adopt one visual technology to be used in the

course, it was decided that the CS1 course at ETSU would be redeveloped to incorporate

two visual technologies, one to support algorithm development and one to support object-

oriented programming development. The two visual technologies selected for inclusion

in the CS1 course at ETSU were RAPTOR which supports algorithm development, and

Alice which supports object-oriented program development. RAPTOR was used to

introduce the topics of selection and repetition. In addition to demonstrating the

development and testing of algorithmic solutions with pseudocode, RAPTOR was used to

visually demonstrate to the students how the solution would work if executed. This also

helped in testing the solution and determining if there were any errors before translating

the solution into Java code. RAPTOR was also used by the students throughout the

semester as an interactive tool for creating and testing their own algorithmic solutions to

the programming problems that they were assigned.

www.manaraa.com

83

Alice was used to visually introduce the basic concepts of object-oriented

programming and to give the students some exposure to objects and classes in a visual

environment. Rather than replace the use of the Java programming language in CS1 with

Alice, the course was supplemented with Alice. The students were given exercises to

complete using Alice to become familiar with using objects and classes and to

specifically help them draw a parallel between objects and classes used in Alice and

similar objects and classes to be used or developed in the Java programming language.

The design phase involved the integration of the selected visual technologies into

the course content and instructional delivery methods. The assessment techniques were

also designed during this phase as well as when they would be administered throughout

the semester.

 During the development phase, course lecture notes and in-class exercises were

developed to incorporate the use of RAPTOR for the topics of selection and repetition

and the use of Alice to present the topics of objects and classes. The checkpoints for

assessment, to be used by all sections of CS1, were also developed during this phase.

The redesigned CS1 course was reviewed and approved by the Introductory

Programming Committee at ETSU and subsequently distributed to all faculty teaching

sections of CS1. Faculty members teaching the revised version of CS1 were also trained

on the visual technologies to be used in the course.

The implementation phase is the phase during which the CS1 course was taught in

its original form during the first semester of the study and in its revised form during the

second semester of the study. Once the revised course had been taught, analysis was

performed on the data collected during both semesters of the study. The analysis of the

www.manaraa.com

84

data collected was performed during the final phase of the ADDIE approach, the

evaluation phase.

Research Question 3: What are the outcomes of teaching the redesigned course?

During the evaluation phase of the ADDIE approach to the redevelopment and

redesign of the CS1 course at ETSU, assessment was performed using the Post-Test Only

Nonequivalent Groups Design approach. The control group, consisting of 93 students

(47 CS majors and 46 non-CS majors), was the collection of students who took the

original version of the CS1 course (instruction without the use of visual technologies) at

ETSU during the first semester of the study. The treatment group, consisting of 80

students (62 CS majors and 18 non-CS majors), was the collection of students enrolled in

the CS1 course during the second semester of the study, in which the revised curriculum

(instruction with the use of visual technologies) was implemented.

Of the 93 students who participated in the control group, 10 dropped the course,

52 passed and 31 failed. Of the students who participated in the control group, 47 were

majors. Among the majors, 1 student dropped during the semester. Upon the completion

of the CS1 course, 34 (72%) of the majors persisted in the major while 13 (28%) of the

majors did not.

Of the 80 students who elected to participate in the treatment group, 3 dropped, 53

passed and 24 failed. Of the students who participated in the treatment group, 62 were

majors. Among the majors, 2 students dropped during the semester. Upon the

completion of the CS1 course, 52 (84%) of the majors persisted in the major while 10

(16%) of the majors did not.

www.manaraa.com

85

These results indicate that, while not a statistically significant improvement at the

0.05 level, the persistence of students in the major at the introductory courses level was

improved. The number of students dropping the course throughout the semester was

small for both the treatment and control group and was statistically the same, therefore

showing no improvement.

Among the groups as a whole, statistically significant improvement was shown

for the treatment group on the topic of selection in general as well as selection subtopics

of if/else statements and nested if/else statements, the repetition subtopic of count-

controlled loops and the topic of objects and classes. Evidence of positive improvement,

although not statistically significant, was also observed for the topic of repetition in

general and the final grade assigned for the course.

 Among both CS majors and non-majors, positive improvement was shown for the

treatment group on the topics of selection, repetition and objects and classes. Positive

improvement was also shown on the selection subtopics of if/else statements and nested

if/else statements and the repetition subtopic of count-controlled loops.

 Informal feedback from students indicated that they were positive about the use of

RAPTOR and Alice in the CS1 course. Several students made positive comments

regarding the software to the instructors throughout the semester and a few students gave

written feedback regarding the use of the software on student evaluations of the courses.

Students indicated that the use of RAPTOR helped them to visualize the concepts thus

understanding them better and that they preferred to develop their solutions in a more

visual, rather than textual, manner. Students also liked the fact that they could more

easily test their solutions before implementing them in the Java programming language.

www.manaraa.com

86

 The professors involved in teaching the courses were also positively impacted by

the use of the visual technologies in the CS1 course. They are now aware of the need to

incorporate more visual teaching tools and techniques into the programming courses.

One professor had already used flowcharts to represent solutions to problems in a visual

manner, although he had not used flowcharting software. The other professor had never

used flowcharts at all. Both, however, realized the impact that using visual

representations can have on student understanding of the concepts and how the use of

flowcharting software encouraged the students to both develop and test solutions prior to

implementing them in the Java programming language. The professors involved in the

study are committed to using more visual-based teaching tools in the future.

Research Question 4: What conclusions may be drawn regarding the value of the new

curricula in terms of student performance and retention?

Analysis performed on the data collected from both the control group and

treatment group indicates that statistically significant improvement was observed for the

treatment group among several different areas of the CS1 course. The use of RAPTOR in

a CS1 course can have a significant impact on student performance regarding if/else

statements and nested if/else statements for decision constructs and regarding count-

controlled loops for repetition constructs. RAPTOR, however, did not show significant

improvement on event-controlled loops for repetition constructs. Overall, students

showed a better understanding of selection and repetition constructs from using

RAPTOR. The use of Alice in a CS1 course can have a significant impact on student

performance in defining and using objects and classes. Finally, the use of visual

www.manaraa.com

87

technologies proved to have a positive impact on student performance for the overall

grade for the course. Although not statistically significant, final grades for students in the

treatment group improved 1 to 8 points.

Implications and Recommendations

In the greater scheme of things, student performance and retention in CS1 courses

are critical to the success of the CS department. Much research has been done in efforts

to address these two problems. Solutions that include technologies showing

improvement in student performance are being sought by CS faculty. In this research, it

is shown that the visual technologies of RAPTOR and Alice, when incorporated in a CS1

course, contributed to the improvement of CS1 student performance.

Before the close of the Spring 2013 semester, a summary document will be

presented to the Introductory Programming Committee at ETSU summarizing the results

of this research along with recommendations for modifications to the CS1 course at

ETSU. Because the results in this research were extremely positive in the use of

RAPTOR, it will be recommended that RAPTOR be incorporated in CS1 on a permanent

basis for teaching selection and repetition constructs. More precisely, it will be

recommended that RAPTOR be added to the course curriculum and be required by

students in the development and testing of all programming assignments.

 Although Alice was shown to be helpful to students in the understanding of

objects and classes, it will be recommended that it only be a supplemental tool in CS1.

Alice seems better suited for visually introducing the concepts of objects and classes

rather than including it in the course curriculum or requiring students to use it. In other

www.manaraa.com

88

words, it will be suggested that faculty only use Alice in lectures to introduce and

illustrate the concepts of objects and classes. Remembering that one of the problems

with CS1 is the number of topics included in the curriculum, this approach will allow

students to see objects and classes visually but will not overburden the course and thus

the students with another technology to be taught and learned.

The results of this research have opened up several possibilities for future lines of

research. CS departments are continually addressing the need to attract and retain women

and minorities in the field of computer science. Expanding the analysis to examine

student performance and retention among the women and minorities in the CS1 courses

at ETSU is a future goal of this research.

This research has also illuminated issues with the sequencing of the course topics

in CS1. For example, is it better to focus on repetition and selection first or to focus on

objects and classes first? Additionally, does more time and effort need to be spent on

repetition and selection in CS1 before introducing objects and classes? Finally, would

the visual technologies also be effective if incorporated into the CS2 curriculum? The

researcher and other members of the Introductory Programming Committee at ETSU will

continue to investigate these questions prior to the 2013-2014 academic year, and the

results will be presented in a follow up summary document to the Introductory

Programming Committee at ETSU for possible modification of the introductory

programming sequence.

Although it was not implemented in this study, a follow-up survey to students

during the treatment semester would be beneficial to obtain more formal feedback from

the students regarding the use of the visual technologies. This would provide feedback

www.manaraa.com

89

from the student point of view regarding the benefits of using the software as well as any

challenges that may have been encountered using the software.

Due to the fact that such a high percentage of today’s CS students are visual

learners, it is possible that other disciplines are also experiencing this same trend.

Therefore, it may be beneficial for other disciplines to explore the use of visual

technologies in their curricula as well. For example, any discipline in which problem

solving is a key component could potentially benefit from using visual flowcharting

software such as RAPTOR in its courses.

Summary

To a CS educator, the problems that the CS academic community is facing are

very real and very troubling. The statistics regarding student success and retention in the

freshman year of the CS major are troubling and even at times alarming. This combined

with declining enrollment in the CS major and increased pressure among universities to

base department funding on student retention are causes for concern among CS

educators. So, what is the solution? How can we recruit more students into the discipline

and more importantly improve student retention and success so as to keep the existing

majors and help them to successfully complete a difficult and challenging program? A

significant amount of time has been dedicated to researching the answers to these

questions. This research expands upon that research to find answers to those questions as

they relate to the CS program at ETSU.

The first phase of the research was to fully explore the problems that the CS

academic community is facing, identify what factors are attributable to the problems of

www.manaraa.com

90

poor performance and low retention rates specifically within the freshman level

introductory programming courses and what solutions have been reported upon to

address these issues. As a result, the factors identified regarding the introductory level

programming courses included student misconceptions of the field, poorly designed

courses, students being under-prepared, number and complexity of topics being

introduced, use of industry-strength programming languages and teaching and delivery

styles that do not relate to today’s visual learners, a category into which many CS majors

fall. The solutions presented to address many of these issues include: the addition of a

course to educate students about the field, the different career opportunities within the

field and the type of education necessary for those career choices; faculty development

and educational training to improve the design of the introductory level courses; the

inclusion of a prerequisite to the CS1 course, commonly referred to as CS0, to improve

students’ problem solving and algorithmic thinking skills at a lower level without the

complexity of development environments and languages that are typically used in

introductory level programming courses; and the use of visual technologies to simplify

the environment and the language used to introduce programming and solve problems.

Like many other universities, ETSU has embraced several of these solutions in an

attempt to improve the learning experience and success of the students in the introductory

programming courses. ETSU offers a course that familiarizes the student with the

various aspects of the CS field and the education requirements necessary to succeed and

pursue a CS related career. ETSU also offers a CS0 course that serves as a prerequisite to

the CS1 course and gives students more exposure to problem solving and algorithmic

development skills using technologies that simplify the problem solving and

www.manaraa.com

91

programming process. These courses, however, are not required of all CS majors. ETSU

has also provided the CS faculty with many opportunities to improve teaching and course

development skills through faculty development workshops and educational training.

However, these solutions have not shown dramatic improvement in student success and

retention in the introductory programming courses. Therefore, other solutions needed to

be explored.

The next phase of the research was to explore the use of visual technologies as a

solution to the problems of student success and retention in the introductory

programming courses. After researching the different types of visual technologies

appropriate for use in a CS1 course, the Introductory Programming Committee at ETSU

selected two visual technologies to be incorporated into the CS1 course at ETSU. The

technologies selected were RAPTOR, to introduce the topics of decisions and repetition

in programming, and Alice, to introduce the topics of objects and classes in object-

oriented programming.

The following phase of the research was to redesign and redevelop the CS1

course at ETSU to incorporate the use of RAPTOR and Alice into the course. Course

materials were developed to include RAPTOR and Alice where appropriate in the course.

Evaluation tools were also developed to measure the effect of the use of the visual

technologies on student performance and retention.

After redesigning the course, the modified course was taught and data was

collected among the treatment group of students. The treatment group of students

consisted of students enrolled in CS1 during the second semester of the study who elected

to participate in the study. Data collected from the treatment group was to be compared

www.manaraa.com

92

to data collected the previous semester from the control group. The control group

consisted of students enrolled in CS1 prior to the redesign of the CS1 course to include

the use of visual technologies.

Upon completion of the data collection, the data were analyzed to determine the

effect of the use of visual technologies on student performance and retention in CS1 at

ETSU. The results were largely positive indicating that the use of RAPTOR and Alice

did have a positive impact on student performance and retention. Some areas of the

course were more positively impacted than others, but all areas of the course that were

selected for inclusion in the study showed an indication of improvement whether

statistically significant or not.

The results indicated that the use of visual technologies in the CS1 course can

have a positive impact on student performance in the course and retention in the major.

As a result, it has been proposed that the Department of Computing at ETSU consider

adoption of the revised CS1 course into the curriculum and potentially explore ways in

which the visual technologies may be incorporated into the CS2 course as well for further

exposure and possible additional benefits to the students.

www.manaraa.com

93

Appendix A

Data Collection Instruments

www.manaraa.com

94

CSCI-1250

Student Questionnaire

Student Name:__

Are you a major in the Computer & Information Sciences Department? Yes No

If Yes, which concentration are you?

 CS (Computer Science)

 IS (Information Systems Science)

 IT (Information Technology)

 I don’t know

If No, what is your major? ______________________________________

Have you previously attempted CSCI-1250 at ETSU? Yes No

Are you at least 18 years of age? Yes No

www.manaraa.com

95

CS1 Checkpoints

The following are checkpoints that have been created to assess student comprehension of

the major programming concepts presented in CS1.

Checkpoints have been created for each of the following programming concepts:

 Selection (decisions)

 Repetition (looping)

 Classes/Objects

The checkpoints have been developed as an assessment in D2L so they can be distributed

to all students in all sections of CS1 after the corresponding topic has been covered. The

reporting feature will make it easy to collect data on the student responses.

www.manaraa.com

96

CS1 – Selection Checkpoint
Question 1.

grade = 60;

if (grade > 70)

System.out.println(“PASS”);

else if (grade < 70)

System.out.println(“FAIL”);

Given the code above, what would the output be?

a. PASS

b. FAIL

c. Nothing at all

Question 2.

grade = 70;

if (grade > 70)

System.out.println(“PASS”);

else if (grade < 70)

System.out.println(“FAIL”);

Given the code above, what would the output be?

a. PASS

b. FAIL

c. Nothing at all

www.manaraa.com

97

Questions 3-6.

 Given the code above, what is the output if ACT = 19 and GPA = 3.98?

a. ACCEPT

b. REJECT

c. ACCEPT UNCONDITIONALLY

d. No output will be displayed

Given the code above, what is the output if ACT = 15 and GPA = 1.98?

a. ACCEPT

b. REJECT

c. ACCEPT UNCONDITIONALLY

d. No output will be displayed

Given the code above, what is the output if ACT = 28 and GPA = 3.9?

a. ACCEPT

b. REJECT

c. ACCEPT UNCONDITIONALLY

d. No output will be displayed

Given the code above, what is the output if ACT = 18 and GPA = 3.85?

a. ACCEPT

b. REJECT

c. ACCEPT UNCONDITIONALLY

d. No output will be displayed

int ACT;

double GPA;

 :

//code here to get ACT & GPA from user

 :

 :

if ((ACT < 18) && (GPA < 2.00))

 System.out.println(”REJECT”);

else

{

 if ((ACT > 18) && (GPA > 2.00))

 System.out.println(”ACCEPT”);

else

 if ((ACT > 27) || (GPA > 3.85))

 System.out.println(”ACCEPT UNCONDITIONALLY”);

}

www.manaraa.com

98

Question 7.

 rating = 7;

 switch (rating)

 { case 1 : System.out.println("Best");

 break;

 case 3 :

 case 5 : System.out.println("Better");

 break;

 case 7 :

 case 9 : System.out.println("Good");

 break;

 default: System.out.println("Incorrect!");

 }

Given the code above, what would the output be?

a. Best

b. Better

c. Good

d. Incorrect

e. Best

Better

Good

Incorrect

f. No output would be displayed

www.manaraa.com

99

Question 8.

 rating = 6;

 switch (rating)

 { case 1 : System.out.println("Best");

 break;

 case 3 :

 case 5 : System.out.println("Better");

 break;

 case 7 :

 case 9 : System.out.println("Good");

 break;

 default: System.out.println("Incorrect!");

 }

Given the code above, what would the output be?

a. Best

b. Better

c. Good

d. Incorrect

e. Best

Better

Good

Incorrect

f. No output would be displayed

www.manaraa.com

100

Question 9.

 rating = 5;

 switch (rating)

 { case 1 : System.out.println("Best");

 case 3 :

 case 5 : System.out.println("Better");

 case 7 :

 case 9 : System.out.println("Good");

 default: System.out.println("Incorrect!");

 }

Given the code above, what would the output be?

a. Best

b. Better

c. Good

d. Incorrect

e. Best

Better

Good

Incorrect

f. Better

Good

Incorrect

g. No output would be displayed

www.manaraa.com

101

Question 10.

 int a = 1;

 int b = 10;

if (a < 1)

 a = 10;

 if (b > 5)

 a = 30;

 else

 a = 40;

 System.out.println(a + “ ” + b);

Given the code above, what would the output be?

a. 1 10

b. 10 10

c. 30 10

d. 40 10

Question 11.

 int a = 1;

 int b = 10;

if (a < 1)

 a = 10;

 if (b > 5)

 a = 30;

 if (a <= 30)

 a = 40;

 System.out.println(a + “ ” + b);

Given the code above, what would the output be?

a. 1 10

b. 10 10

c. 30 10

d. 40 10

www.manaraa.com

102

Question 12.

 int a = 1;

 int b = 5;

 if (a <= b)

 {

 b = 15;

 System.out.println(a + “ ” + b);

 }

 else

 b = 20;

 System.out.println(a + “ ” + b);

Given the code above, what would the output be?

a. 1 15

b. 1 20

c. 1 15

1 15

d. 1 20

1 20

Question 13.

Will the following evaluate to True or False?

 10 < 12 && 5 > 5

a. True

b. False

Question 14.

Will the following evaluate to True or False?

 12 < 10 || 15 > 5

a. True

b. False

www.manaraa.com

103

Question 15.

Will the following evaluate to True or False?

 ((5 > 0 || 10 < 10) && 6 == 6)

a. True

b. False

Question 16.

Which of the following will check for a valid value for gender, M or F, regardless

of upper or lower case?

a. if (gender == ‘M’&& gender == ‘m’ && gender == ‘F’ && gender == ‘f’)
b. if (gender == ‘M’|| gender == ‘m’ || gender == ‘F’ || gender == ‘f’)
c. if (gender != ‘M’&& gender != ‘m’ && gender != ‘F’ && gender != ‘f’)
d. if (gender != ‘M’|| gender != ‘m’ || gender != ‘F’ || gender != ‘f’)

www.manaraa.com

104

CS1 – Repetition Checkpoint
Note: the questions in this checkpoint will only be presented to the user one at a time

because of the nature and progression of some of the questions.

(One per page, one page at a time, without the ability to return to previously

answered questions)

Questions 1-3.

 sum = 0;

 count = 0;

 while (count <= 5)

 {

 sum = sum + count;

 count++;

 }

 System.out.print(sum + “ “);

What kind of loop is this?

a. Count controlled

b. Event controlled

How many times will the loop in the code above execute?

a. 0

b. 1

c. 5

d. 6

e. infinite

When the code above is executed, what will the output be?

a. 0

b. 15

c. 0 1 2 3 4 5

d. 0 1 3 6 10 15

www.manaraa.com

105

Question 4.

How many times will the loop above execute?

a. Not at all

b. Once

c. At least once, possibly more

d. Definitely more than once

e. Infinitely

Question 5.

How many times will the loop above execute?

a. Not at all

b. Once

c. At least once, possibly more

d. Definitely more than once

e. Infinitely

String input=” ”;

char stop = ‘N’;

do

{

 System.out.println(“Hi”);

 System.out.print(“Continue? (Y or N)”);

 input=keyboard.nextLine();

 stop = input.charAt(0);

} while (stop != ‘N’);

String input=” ”;

char stop = ‘Y’;

while (stop != ‘N’)

{

 System.out.println(“Hi”);

 System.out.print(“Continue? (Y or N)”);

 input=keyboard.nextLine();

 stop = input.charAt(0);

}

www.manaraa.com

106

Question 6.

How many times will the loop above execute?

a. Not at all

b. Ten times

c. Eleven times

d. Infinitely

Question 7.

How many times will the loop above execute?

a. Not at all

b. Once

c. At least once, possibly more

d. Definitely more than once

e. Infinitely

String input=” ”;

char stop = ‘N’;

while (stop != ‘N’)

{

 System.out.println(“Hi”);

 System.out.print(“Continue? (Y or N)”);

 input=keyboard.nextLine();

 stop = input.charAt(0);

}

for (int count=0; count <= 10; count++)

{

 System.out.println(“Hi”);

}

www.manaraa.com

107

Question 8.

char response;

Scanner keyboard = new Scanner(System.in);

:

System.out.print (“Would you like extra credit? (Y or N) “);

response = keyboard.nextLine().charAt(0);

Given the code above, which of the following would be the appropriate code to do input

validation on the user’s response? (it should allow for both capital or lowercase letters)

a. while (response == ‘Y’ && response == ‘y’ && response == ‘N’ && response ==

‘n’)

{

 System.out.println(“Error: you must enter a Y or an N.”);
System.out.print (“Would you like extra credit? (Y or N) ”);

response = keyboard.nextLine().charAt(0);

}

b. while (response == ‘Y’ || response == ‘y’ || response == ‘N’ || response ==

‘n’)

{

 System.out.println(“Error: you must enter a Y or an N.”);
System.out.print (“Would you like extra credit? (Y or N) ”);

response = keyboard.nextLine().charAt(0);

}

c. while (response != ‘Y’ && response != ‘y’ && response != ‘N’ && response !=

‘n’)

{

 System.out.println(“Error: you must enter a Y or an N.”);
System.out.print (“Would you like extra credit? (Y or N) ”);

response = keyboard.nextLine().charAt(0);

}

d. while (response != ‘Y’ || response != ‘y’ || response != ‘N’ || response !=

‘n’)

{

 System.out.println(“Error: you must enter a Y or an N.”);
System.out.print (“Would you like extra credit? (Y or N) ”);

response = keyboard.nextLine().charAt(0);

}

www.manaraa.com

108

Question 9.

What kind of loop is an input validation loop?

a. Count controlled

b. Event controlled

Question 10.

Which of the following is an appropriate algorithm for a count controlled loop that should

loop 25 times, printing the current count to the screen each time?

a. Initialize the counter to 0

While the counter < = 25

 Print the counter to the screen

 Add 1 to the counter

b. Initialize the counter to 1

While the counter < 25

 Print the counter to the screen

 Add 1 to the counter

c. Initialize the counter to 0

While the counter < 25

 Print the counter to the screen

d. Initialize the counter to 1

While the counter < = 25

 Print the counter to the screen

 Add 1 to the counter

www.manaraa.com

109

CS1 – Classes/Objects Checkpoint
Note: the questions in this checkpoint will only be presented to the user one at a time

because of the nature and progression of some of the questions.

(One per page, one page at a time, without the ability to return to previously

answered questions)

Use the Employee class given as a handout when necessary to answer the following

questions.

Question 1.

What is the purpose of a “copy constructor”?

a. To create an object of the class with the same values as some other object

of that class

b. To create an object of the class that will set class attributes to default

values of 0, null, or blanks according to the appropriate variable type

c. To create an object of the class but assign no values leaving the driver

program to call the set methods to set the appropriate values

Question 2.

What would the parameter(s) for a copy constructor need to be if you were to create

one for the Employee class?

a. A name, an employee id, a pay rate, the number of hours worked

b. An employee object

c. No parameters would be needed

Question 3.

What is the purpose of an “equals method”?

a. To determine if two objects of the same class are equivalent

b. To determine if two objects of different classes are equivalent

c. To determine if multiple parameters passed through the method’s

parameter list are equivalent to the objects attributes

d. To set two objects to be equal to each other

www.manaraa.com

110

Question 4.

What would the parameter(s) for an equals method need to be if you were to create

one for the Employee class?

a. A name, an employee id, a pay rate, the number of hours worked

b. An employee object

c. No parameters would be needed

Question 5.

What return type should an equals method have?

a. void (nothing will be returned)

b. A String stating whether or not the two objects are equivalent

c. A boolean indicating whether or not the two objects are equivalent

d. An object of the same type (in this case an Employee object)

Question 6.

What is the purpose of a toString method?

a. To convert the object to a String object

b. To format and display the contents of the object to the command line

window

c. To format and display the contents of the object to a message box

d. To prepare and return a String containing the contents of the object

www.manaraa.com

111

Question 7.

Which of the following would be an appropriate no-arg constructor for the Employee

class?
public Employee()

 {

 setName(empName);

 setId(empId);

 setPayRate(empPayRate);

 setHoursWorked(0);

 }

public Employee()

 {

 setName();

 setId();

 setPayRate();

 setHoursWorked();

 }

public Employee()

 {

 }

public Employee()

 {

 setName(“ “);

 setId(“ “);

 setPayRate(0);

 setHoursWorked(0);

 }

www.manaraa.com

112

Question 8.

Which of the following would be the correct way to create an object of the Employee

class whose name is Jane Doe, payrate is 12.00 an hour and id is 123456?

a. Employee janeDoe = new Employee();

b. Employee janeDoe = new Employee(Jane Doe, 12.00, 123456);

c. Employee janeDoe = new Employee(“Jane Doe”, 123456, 12.00);

d. Employee janeDoe = new Employee(“Jane Doe”,”123456”,12.00);

Question 9.

Which of the following would be the correct way to record the fact that Jane Doe

worked 30 hours this week?

a. Employee.setHoursWorked = 30;

b. janeDoe.setHoursWorked = 30;

c. Employee.setHoursWorked(30);

d. janeDoe.setHoursWorked(30);

Question 10.

Which of the following would be the correct way to display how much Jane Doe will

get paid this week?

a. System.out.println(calcWages());

b. System.out.println(janeDoe.calcWages());

c. System.out.println(Employee.calcWages());

d. System.out.println(janeDoe.calcWages(hours, payRate));

e. System.out.println(Employee.calcWages(hours, payRate));

www.manaraa.com

113

Employee class for Classes/Objects checkpoint

public class Employee

{

 private String name;

 private String id;

 private double payRate;

 private double hoursWorked;

 public Employee(String empName, String empId, double empPayRate)

 {

 setName(empName);

 setId(empId);

 setPayRate(empPayRate);

 setHoursWorked(0);

 }

 public void setName(String empName)

 {

 name = empName;

 }

 public void setId(String empId)

 {

 id = empId;

 }

 public void setPayRate(double empPayRate)

 {

 payRate = empPayRate;

 }

 public void setHoursWorked(double empHoursWorked)

 {

 hoursWorked = empHoursWorked;

 }

 public String getName()

 {

 return name;

 }

 public String getId()

 {

 return id;

 }

 public double getPayRate()

 {

 return payRate;

 }

 public double getHoursWorked()

 {

 return hoursWorked;

 }

public double calcWages()

{

 return hoursWorked * payRate;

 }

}//End employee class

www.manaraa.com

114

Appendix B

Course Materials for CS1 at ETSU

www.manaraa.com

115

CSCI-1250 (CS1)
Learning Outcomes

At the conclusion of the course, a student will be able to:
 Explain the software development life cycle: requirements analysis and specification,

design, implementation, testing, and maintenance (Student Outcome 5a*)
 Develop an object-oriented design (Student Outcomes 1c*, 4b*, 5c*)
 Program in Java, an object-oriented programming language (Student Outcomes CS-2*,

IS-1b*)
 Describe the qualities of good programming style and use good programming style in his

or her programs (Student Outcome 1c, 4b, 5c, CS-2, IS-1b)
 Understand and discuss ethical and professional issues in the use of computers and the

impact of computers on society (Student Outcome 2a).

www.manaraa.com

116

CSCI-1250 (CS1)
Course Calendar

www.manaraa.com

117

CSCI-1250 (CS1)
Problem Solving and Programming
Handout

www.manaraa.com

118

www.manaraa.com

119

www.manaraa.com

120

www.manaraa.com

121

www.manaraa.com

122

www.manaraa.com

123

Appendix C

IRB Approvals

www.manaraa.com

124

www.manaraa.com

125

www.manaraa.com

126

References

Adams, J. (2007). Alice in action: computing through animation. Boston, MA: Course

Technology.

Ali, A. (2009). A conception model for learning to program in introductory programming

courses. Issues in Informing Science and Information Technology, 6, 517-529.

Anewalt, K. (2007). Making CS0 fun: An active learning approach using toys, games and

Alice. Journal of Computing Sciences in Colleges, 23(3), 98-105.

Barnes, D., & Kölling, M. (2012). Objects first with Java: A practical introduction using

BlueJ (5
th

 ed.). Upper Saddle River, NJ: Prentice Hall.

Beaubouef, T., & Mason, J. (2005, June). Why the high attrition rate for computer

science students: some thoughts and observations. Inroads – SIGCSE Bulletin,

37(2), 103-106.

Becerra-Fernandez, I., Elam, J., & Clemmons, S. (2010, February). Reversing the

landslide in computer-related degree programs. Communications of the ACM,

53(2), 127-133.

Bhuta, S. (2007). First encounter with Java including Bluej. Maharashtra. India: Shroff

Publishers & Distributors Pvt. Ltd.

Biggers, M., Brauer, A. & Yilmaz, T. (2008). Student perceptions of computer science: a

retention student comparing graduating seniors vs. cs leavers. Proceedings of the

39th SIGCSE technical symposium on computer science education, 402-406.

Blake, J. (2011). Language considerations in the first year CS curriculum . Journal of

Computing Sciences in Colleges, 26(6), 124-129.

Boyer, K., Dwight, R., Miller, C., Raubenheimer, C.D., Stallman, M., & Vouk, M.

(2007). A case for smaller class size with integrated lab for introductory computer

science. Proceedings of the 38th SIGCSE technical symposium on computer

science education, 341-345.

Brown, P. (2008). Some field experience with Alice. Journal of Computing Sciences in

Colleges, 24(2), 213-219.

Brown, W. (2012, June). Introduction to programming with RAPTOR. Retrieved June 1,

2012, from http://raptor.martincarlisle.com/

Browne, M., Lowe, S., Wells, S., & Berry, M.W. (2006). An assessment of computer

science animations: a case study. Journal of Computing Sciences in Colleges,

22(2), 162-168.

http://raptor.martincarlisle.com/

www.manaraa.com

127

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., & Stoodly, I.

(2004). Ways of experiencing the act of learning to program: a phenomenographic

study of introductory programming students at university. Journal of Information

Technology Education, 3, 143-160.

Burgess, G., & Hanshaw, C. (2006, February). Application of learning styles and

approaches in computing sciences classes. Journal of Computing Sciences in

Colleges ,21(3), 60-68.

Cardellini, L. (2002). An interview with Richard M. Felder. Journal of Science

Education, 3(2), 62-65.

Carlisle, M. (2009). RAPTOR: A visual programming environment for teaching object-

oriented programming. Journal of Computing Sciences in Colleges, 24(4), 275-

281.

Carlisle, M., Wilson, T., Humphries, J., & Hadfield, S. (2004, April). RAPTOR:

introducing programming to non-majors with flowcharts. Journal of Computing

Sciences in Colleges, 19(4), 52-60.

Chamillard, A.T., & Karolick, D. (1999). Using learning style data in an introductory

computer science course. Proceedings of the 30th SIGCSE technical symposium

on computer science education, 291-295.

Chamillard, A.T., & Sward, R.E. (2005). Learning styles across the curriculum.

Proceedings of the 10th annual conference on innovation and technology in

computer science education, 241-245.

Chen, L., & Lin, J.M. (2011). Learning styles and student performance in java

programming courses. Proceedings of the 2011 international conference on

frontiers in education: CS and CE, 53-58.

Chen, S., & Morris, S. (2005). Iconic programming for flowcharts, java, turing, etc.

Proceedings of the 10th annual SIGCSE conference on innovation and technology

in computer science education, 104-107.

Cliburn, D. (2006). A CS0 course for the liberal arts. Proceedings of the 37th SIGCSE

technical symposium on computer science education, 77-81.

Dann, W., Cooper, S. & Pausch, R. (2011). Learning to program with Alice (3
rd

 ed.).

Upper Saddle River, NJ: Pearson Prentice Hall.

Davies, S., Polack-Wahl, J.A., & Anewalt, K. (2011). A snapshot of current practices in

teaching the introductory programming sequence. Proceedings of the 42nd ACM

technical symposium on computer science education, 625-629.

www.manaraa.com

128

Dierbach, C., Taylor, B., Zhou, H., & Zimand, I. (2005). Experiences with a CS0 course

targeted for CS1 success. Proceedings of the 36th SIGCSE technical symposium

on computer science education, 317-320.

Dillon, E., Anderson, M., & Brown, M. (2012). Comparing feature assistance between

programming environments and their “effect” on novice programmers. Journal of

Computing Sciences in Colleges, 27(5), 69-77.

Drake, P., & Sung, K. (2011). Teaching introductory programming with popular board

games. Proceedings of the 42nd ACM technical symposium on computer science

education, 619-624.

Eckerdal, A., Thuné, M., & Berglund, A. (2005). What does it take to learn

‘programming thinking’? Proceedings of the first international workshop on

computing education research, 135-142.

Forte, A., & Guzdial, M. (2004). Computers for communication, not calculation: media

as a motivation and context for learning. Proceedings of the Hawaii International

Conference on System Sciences.

Frand, J. (2000, September). The information-age mindset: Changes in students and

implications for higher education. EDUCAUSE review, 15-24.

Gaddis, T. (2011a). Starting out with Alice: A visual introduction to programming (2nd

ed.). Boston, MA: Addison-Wesley.

Gaddis, T. (2011b). Starting out with Java: Objects early (4th ed.). Boston, MA:

Addison-Wesley.

Gal-Ezer, J., & Harel, D. (1998, September). What (else) should CS educators know?

Communications of the ACM, 41(9), 77-84.

Garlick, R., & Cankaya, E.C. (2010). Using Alice in CS1 – a quantitative experiment.

Proceedings of the 15th annual conference on innovation and technology in

computer science education, 165-168.

Gay, L.R., & Airasian, P.W. (2003). Educational Research: Competencies for analysis

and applications (7th ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.

Gomes, A., Carmo, L., Bigotte, E., & Mendes, A.J. (2006). Mathematics and

programming problem solving. Proceedings of the 3
rd

 E-Learning conference –

computer science education, (CD-ROM).

www.manaraa.com

129

Gomes, A., & Mendes, A.J. (2010). A study on student performance in first year CS

courses. Proceedings of the 15th annual conference on innovation and technology

in computer science education, 113-117.

Gomes, A., & Mendes, A.J. (2008). A study on student’s characteristics and

programming learning. Proceedings of the ED-MEDIA ’08 – world conference on

educational multimedia, hypermedia, & telecommunications, 2895-2904.

Gomes, A., & Mendes, A.J. (2007). Learning to program – difficulties and solutions.

Proceedings of the ICEE ’07 – international conference on engineering

education, (CD-ROM).

Grant, N. (2003). A study on critical thinking, cognitive learning style, and gender in

various information science programming classes. Proceedings of the 4th

conference on information technology curriculum, 96-99.

Gribbons, B., & Herman, J. (1997). True and quisi-experimental designs. Practical

Assessment, Research and Evaluation, 5(14). Retrieved October 28, 2011, from

http://pareonline.net/getvn.asp?v=5&n=14

Gross, P., & Powers, K. (2005). Evaluating assessments of novice programming

environments. Proceedings of the first international workshop on computing

education research, 99-110.

Gudmundsen, D., Olivieri, L., & Sarawagi, N. (2011, June). Using Visual Logic©: three

different approaches in different courses – general education, CS0 and CS1.

Journal of Computing Sciences in Colleges, 26(6), 23-29.

Guthrie, R., Yakura, E., & Soe, L. (2011). How did mathematics and accounting get so

many women majors? What can IT disciplines learn? Proceedings of the 2011

conference on Information Technology education, 15-20.

Herbert, C. (2011). An introduction to programming using Alice 2.2 (2
nd

 ed.). Boston,

MA: Course Technology.

Herrmann, N., Popyack, J., Char, B., Zoski, P., Cera, C., Lass, R., & Nanjappa, A.

(2003). Redesigning introductory computer programming using multi-level online

modules for a mixed audience. Proceedings of the 34th SIGCSE technical

symposium on computer science education, 196-200.

Howles, T. (2007). Preliminary results of a longitudinal study of computer science

student trends, behaviors and preferences. Journal of Computing Sciences in

Colleges, 22(6), 18-26.

http://pareonline.net/getvn.asp?v=5&n=14

www.manaraa.com

130

Hughes, J., & Peiris, D.R. (2006). ASSISTing CS1 students to learn: learning approaches

and object-oriented programming. Proceedings of the 11th annual conference on

innovation and technology in computer science education, 275-279.

Kölling, M. (2010). Introduction to programming with Greenfoot: Object-oriented

programming in Java with Games and Simulations. Upper Saddle River, NJ:

Prentice Hall.

Kouznetsova, S. (2007, April). Using BlueJ and Blackjack to teach object-oriented design

concepts in CS1. Journal of Computing Sciences in Colleges, 22(4), 49-55.

Kuri, N.P., & Truzzi, O.M.S. (2002). Learning styles of freshman engineering students.

Proceedings of the international conference on engineering education, 18-22.

Lewis, J., & DePasquale, P. (2008). Programming with Alice and Java. Boston, MA:

Addison-Wesley.

Manaris, B. (2007). Dropping CS enrollments: Or the emperor’s new clothes? Inroads –

SIGCSE Bulletin, 39(4), 6-10.

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language?

Analyzing the difficulties in learning to program. Computer Science Education,

16(3), 211-227.

McCauley, R. & Manaris, B. (2002, May). Comprehensive Report on the 2001 Survey of

Departments Offering CAC-Accredited Degree Programs. Retrieved May 14,

2011, from http://www.cs.cofc.edu/~mccauley/survey

Miller, L.D., Soh, L., Samal, A., Nugent, G., Kupzyk, K., & Masmaliyeva, L. (2011).

Evaluating the use of learning objects in CS1. Proceedings of the 42nd ACM

technical symposium on computer science education, 57-62.

Mitchell, W. (2001). Another look at CS0. Journal of Computing Sciences in Colleges,

17(1), 194-205.

Molenda, M. (2003). ADDIE Model. In Educational Technology: An Encyclopedia.

Santa Barbara, CA: ABC-Clio.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new

instructional approach. Proceedings of the 35th SIGCSE technical symposium on

computer science education, 75-79.

Mullins, P., Whitfield, D., & Conlon, M. (2009, January). Using Alice 2.0 as a first

language. Journal of Computing Sciences in Colleges, 24(3), 194-205.

http://www.cs.cofc.edu/~mccauley/survey

www.manaraa.com

131

Naps, T., Robling, G., Anderson, J., Cooper, S., Dann, W., Fleischer, R.,…Ross, R.

(2003, December). Evaluating the educational impact of visualization. ACM

SIGCSE Bulletin, 35(4), 124-136.

Nesbit, T. (2009). The teaching of introductory programming: issues of context.

Proceedings of the 22nd national advisory committee on computing

qualifications, 71-78.

Oblinger, D. (2003, July). Boomers, Gen-xers & Millennials: Understanding the new

students. EDUCAUSE review, 37-47.

Parker, S. (2002). McGraw-Hill dictionary of scientific and technical terms (6th ed.).

New York, NY: McGraw-Hill.

Pearce, J., & Nakazawa, M. (2008). The funnel that grew our CIS major in the CS desert.

Proceedings of the 39th SIGCSE technical symposium on computer science

education, 503-507.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., &

Paterson, J. (2007, December). A survey of literature on the teaching of

introductory programming. ACM SIGCSE Bulletin, 39(4), 204-223.

Pillay, N., & Jugoo, V. (2005, December). An investigation into student characteristics

affecting novice programming performance. Inroads – SIGCSE Bulletin, 37(4),

107-110.

Riley, D. (2003). The object of Java: introduction to programming using software

engineering principles BlueJ edition. Boston, MA: Addison-Wesley.

Ruslanov, A., & Yolevich, A. (2010, April). College student views of computer science:

opinion survey. Journal of Computing Sciences in Colleges, 25(4), 142-148.

Shelly, G., Cashman, T., & Herbert, C. (2007). Alice 2.0: introductory concepts and

techniques. Boston, MA: Course Technology.

Sigle, J. (2008). Teaching an introductory programming course in a virtual world.

Proceedings of the 2008 international conference on frontiers in education:

computer science, 236-240.

Sloan, R., & Troy, P. (2008). CS 0.5: a better approach to introductory computer science

for majors. Proceedings of the 39th ACM technical symposium on computer

science education, 271-275.

Soe, L., Guthrie, R., Yakura, E., & Hwang, D. (2011). Designing an introductory CIS

course to attract and retain female (and male) students. 2011 ISECON

Proceedings, 28(1642), 1-10.

www.manaraa.com

132

Sprankle, M., & Hubbard, J. (2009). Problem solving & programming concepts (8th ed.).

Upper Saddle River, NJ: Pearson Prentice Hall.

Stamey, J., & Sheel, S. (2010). A boot camp approach to learning programming in a CS0

course. Journal of Computing Sciences in Colleges, 25(5), 34-40.

Stolee, K.T., & Fristoe, T. (2011). Expressing computer science concepts through Kodu

Game Lab. Proceedings of the 42nd ACM technical symposium on computer

science education, 99-104.

Stone, J.A., & Clark, T.A. (2011). The impact of problem-oriented animated learning

modules in a CS1-style course. Proceedings of the 42nd ACM technical

symposium on computer science education, 51-56.

Talton, J., Peterson, D., Kamin, S., Israel, D., & Al-Muhtadi, J. (2006). Scavenger hunt:

computer science retention through orientation. Proceedings of the 37th SIGCSE

technical symposium on computer science education, 443-447.

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning styles and

performance in the introductory programming sequence. Proceedings of the 33rd

SIGCSE technical symposium on computer science education, 33-37.

Trochim, W.M.K, & Donnelly, J.P. (2008). The Research Methods Knowledge Base (3rd

ed.). Mason, OH: Cengage Learning.

Urness, T., & Manley, E. (2011, May). Building a thriving CS program at a small liberal

arts college. Journal of Computing Sciences in Colleges, 26(5), 268-274.

Vegso, J. (2008). Enrollments and degree production at US CS departments drop further

in 2006-07. Computing Research News, 20(2).

Venit, S., & Drake, E. (2011). Prelude to programming: concepts and design. (5th ed.).

Boston, MA: Addison-Wesley.

Wellman, B.L., Davis, J., & Anderson, M. (2009). Alice and robotics in introductory CS

courses. Proceedings of the Fifth Richard Tapia Celebration of Diversity in

Computing Conference: Intellect, Initiatives, Insight, and Innovations, 98-102.

Yadin, A. (2011, December). Reducing the dropout rate in an introductory programming

course. ACM Inroads, 2(4), 71-76.

Yim, K., Garcia, D.D., & Ahn, S. (2010). Computer Science illustrated: Engaging visual

aids for Computer Science education. Proceedings of the 41st ACM technical

symposium on computer science education, 465-469.

www.manaraa.com

133

Yoo, J., Yoo, S., Seo, S., & Pettey, C. (2011). Can AlgoTutor change attitudes toward

algorithms? Proceedings of the 42nd ACM technical symposium on computer

science education, 311-316.

Zweben, S. (2008). Computing degree and enrollment trends from the 2007-2008 CRA

Taulbee Survey. CRA.org. Retrieved May 20, 2011, from

http://archive.cra.org/taulbee/CRATaulbeeReport-StudentEnrollment-07-08.pdf

Zweben, S. (2011). Undergraduate CS degree production rises from the 2009-2010 CRA

Taulbee Survey. CRA.org. Retrieved December 9, 2011, from

http://www.cra.org/uploads/documents/resources/taulbee/CRA_Taulbee_2009-

2010_Results.pdf

http://archive.cra.org/taulbee/CRATaulbeeReport-StudentEnrollment-07-08.pdf
http://www.cra.org/uploads/documents/resources/taulbee/CRA_Taulbee_2009-2010_Results.pdf
http://www.cra.org/uploads/documents/resources/taulbee/CRA_Taulbee_2009-2010_Results.pdf

